| 研究生: |
莊宗翰 Chuang, Tsung-Han |
|---|---|
| 論文名稱: |
溶液式製作有機薄膜電晶體於軟性基板之研究 Organic Thin Film Transistors Fabricated by Solution-processed Methods on Flexible Substrate |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 有機薄膜電晶體 、五環素 、聚3-己基噻酚 、噴墨印刷 、可撓性 |
| 外文關鍵詞: | organic thin film transistors, pentacene, P3HT, inkjet print, flexible |
| 相關次數: | 點閱:139 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在探討以溶液式的製程於軟性基板上製作有機薄膜電晶體之現象,初步以真空鍍膜的方式製作五環素有機薄膜電晶體並觀察其可靠度。為了要更進一步降低成本與大面積製造,我們使用噴墨印刷技術定義圖案並分析其可行性,然而,我們發現此製程非常容易受到表面粗糙度以及表面能的影響使得困難度增加,因而單純使用噴印式的絕緣層製作五環素有機薄膜電晶體,但是我們同時也萃取出噴印的最佳參數。經過以上的實驗結果評估,我們改用底部接觸的結構來實現全溶液-聚3-己基噻酚-薄膜電晶體,其絕緣層使用高分子,旋塗於不鏽鋼基板上,源極與汲極使用噴墨印刷定義,所有的製程均是常壓下製作,溫度均在150℃以下。最後,我們成功沿伸溶液式的製程在不同的基板上,也意味著全溶液式的有機薄膜電晶體是可行的。
In this work, the fabrication of solution-processed organic thin film transistors (OTFTs) on flexible substrates was investigated. In the preliminary study, vacuum deposition was used to the fabrication of pentacene-based OTFT to study the reliability. Furthermore, inkjet-printing technology to define patterns in order to reduce the production costs is conducted for feasibility analysis. However, the difficulty of inkjet-printing fabrication will be increased by worse adhesion between materials from rough surface roughness or mismatch of surface energy. Instead, an inkjet-printed insulator in pentacene-based OTFT was employed and the best parameters were extracted, respectively. After evaluating experimental results, bottom contact structure to realize all solution poly (3-hexythiophene) (P3HT) based organic thin film transistor was selected. The polymer insulator was spin-coated on the stainless steel substrate, and source/drain was defined by inkjet-printing. All the processes were operated in atmosphere ambient and below 150℃. Finally, extended solution-processed methods on various substrates were demonstrated. This means that the all solution-processed OTFTs are really feasible.
[1] A Pochettino, “Sul comportamento foto-elettrico dell’ antracene,” Acad. Lincei Rendic., vol. 15, p.355-368, 1906.
[2] M. Pope, H. Kallmann, and P. Magnante, “Electroluminescence in organic crystals,” J. Chem. Phys., vol. 38, pp. 2042-2043, 1963.
[3] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, “Electrical conductivity in doped polyacetylene,” Physical Review Letters, vol. 39, pp. 1098 - 1101, 1977.
[4] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett., Vol. 49, pp. 1210-1212, 1986.
[5] G. Horowitz, X. peng, D. Fichou and F. Ganrnier, “Role of the semiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors,” Synth. Met., Vol. 51, pp. 419-424, 1992.
[6] X. Peng, G. Horowitz, D. Fichou and F. Garnier, ”All-organic thin-film transistors made of aopha-sexithienyl semiconducting and various polymeric insulating layers,” Appl. Phys. Lett., vol. 57, pp. 2013-2015, 1990.
[7] Z. Bao, Y. Feng, A. Dodabalapur, V. R. Raju and A. J. Lovinger, ”High-performance plastic transistors fabricated by printing techniques,” Chem. Mater., vol. 9, pp. 1299-1301, 1997.
[8] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, vol. 290, pp. 2123-2126, 2000.
[9] Y. Sakai, T. Futakuchi and M. Adachi, ”Preparation of BaTiO3 thick films by inkjet printing on oxygen-plasma-modified substrates ,” Jpn. J. Appl. Phys., Vol. 45, pp. 7247-7251, 2006.
[10] D. K. Hwang, J.M. Choi, J. H. Park, J. H. Kim, E. Kim, and S. Im, ”Low-voltage pentacene thin-film transistor with a polymer/YOx/polymer triple-layer dielectric on a plastic substrate,” Electrochem. Solid-State Lett., vol. 10, pp. H117-H119, 2007.
[11] K. H. Lee, K. Lee, M. S. Oh, J. M. Choi, S. Im, S. Jang and E. Kim, ”Flexible high mobility pentacene transistor with high-k/low-k double polymer dielectric layer operating at −5 V,” Org. Electron., vol. 10, pp. 194-198, 2009.
[12] H. S. Tan, S. R. Kulkarni, T. Cahyadi, P. S. Lee, S. G. Mhaisalkar, J. Kasim, Z. X. Shen and F. R. Zhu, ”Solution-processed trilayer inorganic dielectric for high performance flexible organic field effect transistors,” Appl. Phys. Lett., vol. 93, pp. 183503-1-183503-3, 2008.
[13] C. Y. Wei, S. H. Kuo, Y. M. Hung, W. C. Huang, F. Adriyanto, and Y. H. Wang, “High mobility pentacene-based thin film Transistors with a solution-processed barium titanate insulator,” IEEE Electron Dev. Lett., vol. 32, pp. 90-92, 2011.
[14] M. M. Ling and Z. Bao, “Thin film deposition, patterning, and printing in organic thin film transistors,” Chem. Mater., vol. 16, pp. 4824-4840, 2004.
[15] Y. Roichman and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Appl. Phys. Lett., vol. 80, pp. 151-153, 2002.
[16] C. Reese, M. Roberts, M. M. Ling and Z. Bao, “Organic thin film transistors, ” Mater. Today, vol. 7, pp. 20-27, 2004.
[17] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells, ”Nature Materials, vol. 5, pp. 197-203, 2006.
[18] G. Horowitz, “Organic field-effect transistors, ” Adv. Mater., vol. 10, pp.365-377, 1998.
[19] Kymissis, “Organic field effect transistors, theory, fabrication and characterization,” Springer Science+Business Media, pp.83, 2009.
[20] C. D. Dimitrakopoulos and D. J. Mascaro, “Organic thin-film transistors: A review of recent advances,” IBM J. Res. & Dev., vol. 45, pp.11-27, 2001.
[21] 陳壽安, 化工 38, 98 (1992).
[22] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Lgeveld-Voss, A. J. H. Spiering, R. A. J. Janssen and E. W. Meijer, “Microstructure–mobility correlation in self-organised, conjugated polymer field-effect transistors” Synth. Met., vol. 111, p.129-132, 2000.
[23] T. W. Kelly, L. D. Boardman, T. D. Dinbar, V. D. Muyres, M. J. Pellerite, and T. P. Smith, “High-performance OTFTs using surface-modified alumina dielectrics,” J. Phys. Chem. B., vol. 107, pp. 5877-5881, 2003.
[24] D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. C. Chang, M. Joo, C. Y. Ryu and K. Cho,“ Enhancement of field effect mobility in polythiophene thin film transistors,” Adv. Funct. Mater., vol. 15, pp.77-82 ,2005.
[25] Z. Bao and J. Locklin,”Organic field effect transistors,” CRC Press., pp.11, 2007.
[26] J. D. Plummer, “Silicon VLSI technology: Fundamentals, practice and modeling”, Prentice hall, p.542, 2000.
[27] J. J. Cuomo, D. L. Pappas, J. Bruley, J. P. Doyle, and K. L. Saenger, “Vapor deposition processes for amorphous carbon films with sp3 fractions approaching diamond, ”J. Appl. Phys., vol. 70, pp. 1706-1711, 1991.
[28] K. S. Kwon, Y. S. Choi, D. Y. Lee, J. S. Kimb and D. S. Kim,” Low-cost and high speed monitoring system for a multi-nozzle piezo inkjet head,” Sensors and Actuators A, vol. 180, pp. 154-165, 2012.
[29] D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” J. Appl. Polym. Sci., vol. 13, pp. 1741-1747, 1969.
[30] C. Y. Wei, F. Adriyanto, Y. J. Lin, Y. C. Li, T. J. Huang, D. W. Chou and Y. H. Wang, ”Pentacene-based thin-film transistors with a solution-process hafnium oxide insulator,” IEEE Electron Dev. Lett., vol. 30, pp.1039-1040, 2009.
[31] C. C. Yeh, Y. J. Lin, S. K. Lin, S. F. Chung, L. M. Huang, T. C. Wen and Y. H. Wang, ”Plasma treatment on plastic substrates for liquid-phase-deposited SiO2,” J. Vac. Sci. Techonl. B, vol. 25, pp. 1635-1639, 2007.
[32] T. H. J. van Osch, J. Perelaer, A. W. M. deLaat, and U. S. Schubert, “Inkjet printing of narrow conductive tracks on untreated polymeric substrates, ” Adv. Mater., vol. 20, pp. 343-345, 2008.
[33] J. A. Callow1, M. E. Callow, L. K. Ista, G. Lopez and M. K. Chaudhury,”The influence of surface energy on the wetting behaviour of the spore adhesive of the marine alga ulva linza (synonym enteromorpha linza),” J. R. Soc. Interface, vol. 2, pp. 319-325, 2005.
[34] J. S. Kang, H. S. Kim, J. Ryu, H. T. Hahn, S. Jang and J. W. Joung, ”Inkjet printed electronics using copper nanoparticle ink,” J Mater Sci: Mater Electron, vol. 21, pp. 1213-1220, 2010.
[35] A. J. Kinloch. Adhesion and adhesives: Science and technology. Springer, Great Britain:Cambridge University, pp. 41-43, 1987.
[36] J. Y. Kim, J. H. Jung, D. E. Lee and J. Joo, ”Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene) / poly(4-styrenesulfonate) by a change of solvents, ”Synthetic Metals, vol. 126, pp. 311-316, 2002.
[37] J. Ouyang, Q. Xu, C. W. Chu, Y. Yang, G. Li and J. Shinar, ” On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxyth iophene):poly(styrene sulfonate) film through solvent treatment, ” Polymer, vol, 45, pp. 8443-8450, 2004.
[38] H. S. Tan, S. R. Kulkarni, T. Cahyadi, P. S. Lee, S. G. Mhaisalkar, J. Kasim, Z. X. Shen, and F. R. Zhu, “Solution-processed trilayer inorganic dielectric for high performance flexible organic field effect transistors,” Appl. Phys. Lett., vol. 93, pp. 183503-1-183503-3, 2008.
[39] Z. R. Wang, J. Z. Xin, X. C. Ren, X. L. Wang, C. W. Leung, S. Q. Shi, A. Ruotolo and P. K .L. Chan, ”Low power flexible organic thin film transistors with amorphous Ba0.7Sr0.3TiO3 gate dielectric grown by pulsed laser deposition at low temperature,” Organic Electronics, vol. 13, pp. 1223-1228, 2012.
[40] K. H. Lee, K. Lee, M. S. Oh, J. M. Choi, S. Im, S. Jang and E. Kim, “Flexible high mobility pentacene transistor with high-k/ low-k double polymer dielectric layer operating at −5 V,” Organic Electronics, vol. 16, pp. 239-247, 2008.
[41] D. K. Hwang, J. M. Choi, J. H. Park, J. H. Kim, E. Kim and S. Im, “Low-voltage pentacene thin-film transistor with a polymer/YOx/polymer triple-layer dielectric on a plastic substrate, ” Electrochem. Solid-State Lett., vol. 10, pp. H117-H119, 2007.
[42] H. Jia, S. Gowrisanker, G. K. Pant, R. M. Wallace, and B. E. Gnade,” Effect of poly (3-hexylthiophene) film thickness on organic thin film transistor properties,” J. Vac. Sci. Technol., vol. 24, pp. 1228-1232, 2006.
[43] M. J. Joung, C. A. Kimb, S. Y. Kang, K. H. Baek, G. H. Kim, S. D. Ahn, I. K. You, J. H. Ahn and K. S. Suh, “The application of soluble and regioregular poly(3-hexylthiophene) for organic thin-film transistors,” Synthetic Metals, vol. 149, pp.73-77, 2005.
[44] J. A. Lim, J. H. Kim, L. Qiu, W. H. Lee, H. S. Lee, D. Kwak, and K. Cho,” Inkjet-printed single-droplet organic transistors based on semiconductor nanowires embedded in insulating polymers,” Adv. Funct. Mater., vol. 20, pp. 3292-3297, 2010.
[45] F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G. W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrar, “Inkjet-printed graphene electronics,” ACS Nano., vol. 6, pp. 2992-3006, 2012.
[46] S. Lim, B. Kang, D. Kwak, W. H. Lee, J. A. Lim, and K. Cho, “Inkjet-printed reduced graphene oxide/poly(vinyl alcohol) composite electrodes for flexible transparent organic field-effect transistors,” J. Phys. Chem. C, vol. 116, pp. 7520-7525, 2012.