| 研究生: |
吳青峰 Wu, Ching-Feng |
|---|---|
| 論文名稱: |
渦流與注入流體位置對微型混合器效率之影響 The effect of vortex and injection position on the efficiency of micromixers |
| 指導教授: |
吳志陽
Wu, Zhi-Yang 鍾震桂 Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 微型混合器 、微流體 、混合效率 、微模造 |
| 外文關鍵詞: | micromixer, microfluid, mixing efficiency, micro moldong |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討被動式微型混合器中,改變流道結構、擋板尺寸以及流體注入位置使流體產生較佳的混合效果。並且利用熱流數值模擬軟體(CFD-ACE+)模擬計算流場之狀態,以供預測微型混合器效率之參考。
製程中,採用SU-8厚膜光阻以微影製程在矽晶圓上製作微型混合器之母模;再以聚二甲基矽氧烷(polydimethysiloxane,PDMS)為材料,翻模製作微型混合器,並與流道上蓋接合。最後,檢測混合效率的方式則是用影像軟體分析流道中不同位置之灰階色值,以判定其混合效果。
為了研究流道結構對混合的影響,將擋板尺寸、流體之注入位置、入口流速、與混合室長寬比改變,然後比較各種變數對微型混合器混合效率之影響。根據數值模擬與實驗之結果,可以發現擋板的高度與數目會對混合效果產生最大的影響。與其餘之微型混合器相較,本微型混合器結構簡單、易製造。因此,可以推論本微型混合器在雷諾數50以下時,比其他型式混合器更好。
In this thesis, we investigate a novel passive micromixer for better efficiency of mixing by tuning the structures of microfluidic channels with baffles and side injection. Furthermore, simulating the situation of the flows by software CFD-ACE+ provides the forecast of the mixing efficiency of the micromixer.
In fabrication, SU-8 thick film photoresist is used to fabricate the mold of the micromixers on the silicon wafer by photolithography. Then, we transfer the mold structure of the micromixer to polydimethysiloxane (PDMS), and bond it with a cover layer of PDMS. Finally, the mixing performance has been demonstrated with an image analyzing software to quantify the gray value distribution in the exit section.
To study the effect of structure on mixing, we change the size of baffles, the injection positions, the speed of the injected liquid and the length-width ratio of mixing rooms. Then, we compare the effect of those variables on the mixing efficiency of the micromixer. The numerical simulation and the experimental results show that the number and height of baffles dominates the mixing efficiency. Compare with other micromixers, the novel micromixer’s structure is simple and easy to fabricate. Thus, we may conclude that the present micromixers have better performance than others for the cases with Re<50.
1.G. T. A. Kovacs, “Micromachined transducers sourcebook,”McGraw-Hill, New York, p. 808, 1998.
2.Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto and R. Maeda, “Ultrasonic micromixer for microfluidic systems,” Sensors and Actuators, A: Physical, Vol.93, No. 3, pp. 266-272, 2001.
3.V. Vivek, Y. Zeng and E. S. Kim, “Novel acoustic-wave micromixer,” IEEE International Micro Electro Mechanical Systems Conference, Miyazaki, Japan, pp.668-673, 2000.
4.H. Jagannathan, G. G. Yaralioglu, A. S. Ergun and B. T. Khuri-Yakub,“Micro-fluidic channels with integrated ultrasonic transducers,” Proceedings
of the IEEE Ultrasonics Symposium, Vol. 2, pp. 859-862, 2001.
5.H. Y. Wu and C. H. Liu, “A novel electrokinetic micromixer,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems,
Boston, U.S.A., pp. 631-634, 2003.
6.L. H. Lu, K. S. Ryu and C. Liu, “A magnetic microstirrer and array for microfluidic mixing,” Journal of Microelectromechanical Systems, Vol. 11, No. 5, pp. 462-469, 2002.
7.P. Huang and K. S. Breuer, “Performance and scaling of an electro-osmotic mixer,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, U.S.A., pp. 663-666, 2003.
8.N. A. Patankar and H. H. Hu, “Numerical simulation of electroosmotic flow,”Analytical Chemistry, Vol. 70, No. 9, 1998.
9.B. R. Thomas and S. Ghodbane, “Evaluation of a mixed micellar electrokinetic capillary electrophoresis method for validated pharmaceutical quality control,” Journal of Liquid hromatography, Vol. 16, No.9-10, pp. 1983-2006,
1993.
10.J. Auerswald and H. F. Knapp, “Quantitative assessment of dielectrophoresis as a micro fluidic retention and separation technique for beads and human blood erythrocytes,” Vol. 67-68, pp. 879-886, 2003.
11.J. H. Tsai and L. Lin, “Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump,” Sensors and Actuators A:Physical, Vol. 97-98, pp. 665-671, 2002.
12.M. Koch, D. Chatelain, A. G. R. Evans and A. Brunnschweiler, “Two simple micromixers based on silicon,” Journal of Micromechanics and Microengineering, Vol. 8, pp. 123-126, 1998.
13.N. Schwesinger, T. Frank and H. Wurmus, “A modular microfluidi system with an integrated micromixer,” Journal of Micromechanics and Microengineering, Vol.6, pp. 99-102, 1996.
14.S. C. Jacobson, T. E. McKnight and J. M. Ramsey, “Microfluidic devices for electrokinetically driven parallel and serial mixing,” Analytical Chemistry, Vol.71, pp. 4455-4459, 1999.
15.B. He, R. J. Burke, X. Zhang, R. Zhang and F. E. Regnier, “A picoliter-volume mixer for microfluidic analytical systems,” Analytical Chemistry, Vol.73, pp. 1942-1947, 2001.
16.T. J. Johnson, D. Ross and L. E. Locascio, “Rapid microfluidic mixing,” Analytical Chemistry, Vol.74, pp. 45-51, 2002.
17.D. Gobby, P. Angeli and A. Gavriilidis, “Mixing characteristics of T-type microfluidic mixers,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 126-132, 2001.
18.X. Niu and Y. K. Lee, “Efficient spatial-temporal chaotic mixing in microchannels,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 454-462, 2003.
19.A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, “Chaotic mixer for microchannels,” Science, Vol. 295, pp. 647-651, 2002.
20.G. A. C. M. Spierings, J. Haisma, F. J. H. M. and Kruis, “Direct bonding of organic polymeric materials,” Philips Journal of Research, Vol. 49, pp. 139-149, 1995.
21.Y. C. Chan, M. Carles, N. J. Sucher, M. Wong and Y. Zohar, “Design and fabrication of an integrated microsystem for microcapillary electrophoresis,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 914-921, 2003.
22.J. Wei, H. Xie, M. L. Nai, C. K. Wong and L. C. Lee, “Low temperature wafer anodic bonding,”Journal of Micromechanics and Microengineering, Vol. 13, pp. 217-222, 2003.
23.B. Bilenberg, T. Nielsen, B. Clausen and A. Kirstensen, “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” Journal of Micromechanics and Microengineering, Vol. 14, pp. 814-818, 2004.