簡易檢索 / 詳目顯示

研究生: 吳佩珊
Wu, Pei-Shan
論文名稱: 硫氰酸鉀後處理氮化碳應用於太陽能轉換與儲存之研究
KSCN-treated Carbon Nitrides for Solar Energy Conversion and Storage
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 100
中文關鍵詞: 氮化碳氰胺官能基團光觸媒結晶相態氮化碳水分解產氫暗觸媒儲存電子能力
外文關鍵詞: carbon nitrides, cyanamide functional groups, photocatalyst, crystallinity carbon nitrides, photocatalytic water splitting, hydrogen evolution, dark photocatalyst, electron storage
相關次數: 點閱:207下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功地以原型氮化碳為本體與硫氫酸鉀進行後處理,合成出具原型氮化碳—K-PHI同型異質結構的氰胺官能基修飾氮化碳光觸媒,並研究其光催化產氫之效能與利用儲存光電子能力於暗處產氫之效能。本研究於氬氣環境下,將原型氮化碳與硫氫酸鉀以重量比1:2混合後於爐館進行熱處理,合成具有不同表面形貌與結晶性的氰胺官能基修飾之氮化碳。透過FTIR、 EA確認具有氰胺官能基。透過XRD、HR-TEM與FTIR確認具有結晶相態的K-PHI。由KCN、KMACN500與KMACN400的AQY結果與UV-Vis吸收之對應關係,推論KCN與KMACN400皆為Z-scheme異質結構,而KMACN500為Type Ⅱ 異質結構。推論本研究合成之KCN、KMACN500與KMACN400皆具原型氮化碳—K-PHI同型異質結構。以KCN、KMACN500與KMACN400為光觸媒之5hr產氫量分別為20593、13823與10775 mol/g cat,於暗處3hr產氫量分別為58、37與41 mol/g cat,可以確認具有氰胺官能基團的氮化碳異質結構可提升氮化碳的產氫效能並具有儲存光電子能力。由HAADF影像推論表面活性位點的分布為影響本研究中氮化碳產氫效能之關鍵因素。

    In this work, heterojunctions composed of cyanamide functional group modified Potassium Poly Heptazine Imides(K-PHI) and pristine carbon nitrides have been successfully synthesized by post-treatment of the pristine carbon nitrides with potassium thiocyanate (KSCN). The carbon nitrides photocatalysts which possess the ability of electron storage were applied to conduct photocatalytic hydrogen evolution and hydrogen evolution in the dark. The pristine carbon nitrides and KSCN were mixed at a weight ratio of 1:2 and then heated under argon atmosphere in the tube furnace to synthesize cyanamide functional group-modified nitrides with different surface morphologies and crystallinity. The cyanamide functional group was confirmed by FTIR and EA. From the XRD, HR-TEM and FTIR characterizations results, it showed the existence of crystalline phase K-PHI. From the corresponding relationship between the AQY results and UV-Vis absorption of KCN, KMACN500, and KMACN400, it is inferred that both KCN and KMACN400 are Z-scheme heterostructures and KMACN500 is a Type Ⅱ heterostructure. We proposed that the KCN, KMACN500 and KMACN400 synthesized in this study were all heterojunctions composed of K-PHI and pristine carbon nitrides. The HER yields after 5 hours irradiations of KMACN400, KMACN500 and KCN is 10775, 13823 and 20593 μmol/g-cat. The HER yields in the dark for 3 hours of KCN, KMACN500 & KMACN400 are 58, 37 and 41 μmol/g-cat. It can be confirmed that the carbon nitrides heterostructure with cyanamide functional groups improve the solar hydrogen evolution rate and possess the ability of photoelectron storage. It is deduced from the HAADF image that the distribution of surficial active sites is a key factor affecting the hydrogen evolution rate of carbon nitride in this study.

    目錄 摘要 I 誌謝 VII 目錄 VIII 圖目錄 XII 表目錄 XVII 第一章 緒論 1 1-1前言 1 1-2半導體材料水分解產氫 3 1-2-1發展與介紹 3 1-2-2基本原理 3 1-3太陽能光轉換與儲存 7 1-4研究動機 8 第二章 文獻回顧 9 2-1氮化碳基本性質 9 2-1-1氮化碳結晶結構與光學性質 9 2-1-2氮化碳的奈米結構設計及方法 11 2-1-3氮化碳應用於光觸媒產氫 12 2-2硫氰酸鉀後處理氮化碳 13 第三章 實驗 22 3-1實驗材料 22 3-1-1製備原始氮化碳 22 3-1-2製備超分子前驅物粉末於空氣中鍛燒合成之原始氮化碳 22 3-1-3硫氰酸鉀後處理之氮化碳 22 3-1-4硫氰酸鉀後處理氮化碳製備之光電極 22 3-2實驗流程及步驟 23 3-2-1製備原型氮化碳 24 3-2-2以超分子複合物於空氣環境中煅燒合成之原始氮化碳 24 3-2-2-1製備超分子(Supermolecular)前驅物 24 3-2-3硫氰酸鉀後處理之氮化碳 26 3-2-4硫氰酸鉀後處理氮化碳製備之光電極 29 3-3水分解產氫系統 31 3-4表觀量子效率(AQY)實驗與公式計算 34 3-5黑暗中水分解產氫系統 35 3-6 照光儲存電子與放電之系統 37 3-7分析與鑑定 39 3-7-1掃描式電子顯微鏡(Scanning electron microscope) 39 3-7-2穿透式電子顯微鏡(Transmission electron microscopy) 39 3-7-3 X光繞射分析儀(X-ray diffractometer) 40 3-7-4 X光光電子能譜儀(X-ray photoelectron spectroscopy) 41 3-7-5 傅立葉轉換式紅外線光譜儀(Fourier-Transform Infrared Spectroscopy) 42 3-7-6 表面積及奈米孔徑分析儀(Specific Surface Area and Porosimetry Analyzer) 42 3-7-7氣相層析儀(Gas chromatography) 43 第四章 結果與討論 44 4-1氮化碳光觸媒之合成與特性分析 44 4-1-1原型氮化碳光觸媒之合成與特性分析 44 4-1-2硫氰酸鉀後處理氮化碳光觸媒之合成與特性分析 51 4-1-3氮化碳光觸媒之光學特性分析 67 4-2氮化碳光觸媒之光催化效能與機制探討 71 4-2-1氮化碳光觸媒之水分解產氫效能與穩定性實驗 71 4-2-2氮化碳粉末光觸媒儲存光電子能力於暗處水分解產氫之效能 76 4-3氮化碳光觸媒水分解產氫效率之探討 80 4-4氮化碳粉末光觸媒儲存電子能力與暗處水分解產氫效能機制之探討 84 4-5硫氰酸鉀後處理氮化碳光觸媒應用於太陽能儲存與轉換 87 第五章 結論 96 第六章 參考文獻 98  

    1. Lam, S.S., et al., Mainstream avenues for boosting graphitic carbon nitride efficiency: towards enhanced solar light-driven photocatalytic hydrogen production and environmental remediation. Journal of Materials Chemistry A, 2020.
    2. Su, J., et al., Synthesis and application of transition metal phosphides as electrocatalyst for water splitting. Science bulletin, 2017. 62(9): p. 633-644.
    3. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37-38.
    4. Fajrina, N. and M. Tahir, A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. International Journal of Hydrogen Energy, 2019. 44(2): p. 540-577.
    5. Su, T., et al., Role of interfaces in two-dimensional photocatalyst for water splitting. Acs Catalysis, 2018. 8(3): p. 2253-2276.
    6. Lau, V.W.-h., et al., Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nature communications, 2016. 7: p. 12165.
    7. Lau, V.W.h., et al., Dark Photocatalysis: Storage of Solar Energy in Carbon Nitride for Time‐Delayed Hydrogen Generation. Angewandte Chemie, 2017. 129(2): p. 525-529.
    8. Podjaski, F., J. Kröger, and B.V. Lotsch, Toward an aqueous solar battery: direct electrochemical storage of solar energy in carbon nitrides. Advanced Materials, 2018. 30(9): p. 1705477.
    9. Wang, X., et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature materials, 2009. 8(1): p. 76-80.
    10. Xu, Q., et al., Enhanced visible-light photocatalytic H 2-generation activity of carbon/gC 3 N 4 nanocomposites prepared by two-step thermal treatment. Dalton Transactions, 2017. 46(32): p. 10611-10619.
    11. Iqbal, W., et al., One-step large-scale highly active gC 3 N 4 nanosheets for efficient sunlight-driven photocatalytic hydrogen production. Dalton Transactions, 2017. 46(32): p. 10678-10684.
    12. Li, K., F.-Y. Su, and W.-D. Zhang, Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen. Applied Surface Science, 2016. 375: p. 110-117.
    13. Fan, Q., et al., A simple fabrication for sulfur doped graphitic carbon nitride porous rods with excellent photocatalytic activity degrading RhB dye. Applied Surface Science, 2017. 391: p. 360-368.
    14. Sagara, N., et al., Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Applied Catalysis B: Environmental, 2016. 192: p. 193-198.
    15. Chen, P.-W., et al., Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution. Applied Surface Science, 2017. 392: p. 608-615.
    16. Xiang, Q., J. Yu, and M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. The Journal of Physical Chemistry C, 2011. 115(15): p. 7355-7363.
    17. Cheng, F., H. Yin, and Q. Xiang, Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity. Applied Surface Science, 2017. 391: p. 432-439.
    18. Yu, J., et al., Noble metal-free Ni (OH) 2–gC 3 N 4 composite photocatalyst with enhanced visible-light photocatalytic H 2-production activity. Catalysis Science & Technology, 2013. 3(7): p. 1782-1789.
    19. Zhu, Z., et al., Fabrication of conductive and high-dispersed Ppy@ Ag/g-C3N4 composite photocatalysts for removing various pollutants in water. Applied Surface Science, 2016. 387: p. 366-374.
    20. Yu, J., et al., Photocatalytic reduction of CO 2 into hydrocarbon solar fuels over gC 3 N 4–Pt nanocomposite photocatalysts. Physical Chemistry Chemical Physics, 2014. 16(23): p. 11492-11501.
    21. Lei, J., et al., Highly condensed gC 3 N 4-modified TiO 2 catalysts with enhanced photodegradation performance toward acid orange 7. Journal of Materials Science, 2015. 50(9): p. 3467-3476.
    22. Zhang, Z., et al., Graphitic carbon nitride nanosheet for photocatalytic hydrogen production: The impact of morphology and element composition. Applied Surface Science, 2017. 391: p. 369-375.
    23. Chen, D., J. Yang, and H. Ding, Synthesis of nanoporous carbon nitride using calcium carbonate as templates with enhanced visible-light photocatalytic activity. Applied Surface Science, 2017. 391: p. 384-391.
    24. Yuan, J., et al., Positioning cyanamide defects in g-C3N4: Engineering energy levels and active sites for superior photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018. 237: p. 24-31.
    25. Zeng, Z., et al., Carbon nitride with electron storage property: Enhanced exciton dissociation for high-efficient photocatalysis. Applied Catalysis B: Environmental, 2018. 236: p. 99-106.
    26. Zhu, B., et al., First-principle calculation study of tri-s-triazine-based g-C3N4: a review. Applied Catalysis B: Environmental, 2018. 224: p. 983-999.
    27. He, F., et al., The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Applied Catalysis B: Environmental, 2020: p. 118828.
    28. Ai, M., et al., MnOx-decorated 3D porous C3N4 with internal donor–acceptor motifs for efficient photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2019. 256: p. 117805.
    29. Jun, Y.S., et al., From melamine‐cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Advanced Functional Materials, 2013. 23(29): p. 3661-3667.
    30. Jun, Y.S., et al., Three‐dimensional macroscopic assemblies of low‐dimensional carbon nitrides for enhanced hydrogen evolution. Angewandte Chemie International Edition, 2013. 52(42): p. 11083-11087.
    31. Schalley, C.A., et al., Mass spectrometric characterization and gas‐phase chemistry of self‐assembling supramolecular squares and triangles. Chemistry–A European Journal, 2002. 8(15): p. 3538-3551.
    32. Schlomberg, H., et al., Structural Insights into Poly (Heptazine Imides): A Light-Storing Carbon Nitride Material for Dark Photocatalysis. Chemistry of Materials, 2019. 31(18): p. 7478-7486.
    33. Miller, T., et al., Carbon nitrides: synthesis and characterization of a new class of functional materials. Physical Chemistry Chemical Physics, 2017. 19(24): p. 15613-15638.
    34. Zhang, G., et al., Electron deficient monomers that optimize nucleation and enhance the photocatalytic redox activity of carbon nitrides. Angewandte Chemie International Edition, 2019. 58(42): p. 14950-14954.
    35. Savateev, A., et al., Towards organic zeolites and inclusion catalysts: Heptazine imide salts can exchange metal cations in the solid state. Chemistry–An Asian Journal, 2017. 12(13): p. 1517-1522.
    36. Savateev, A., et al., Potassium Poly (heptazine imides) from Aminotetrazoles: Shifting Band Gaps of Carbon Nitride‐like Materials for More Efficient Solar Hydrogen and Oxygen Evolution. ChemCatChem, 2017. 9(1): p. 167-174.

    QR CODE