簡易檢索 / 詳目顯示

研究生: 余隆佑
Yu, Long-Yo
論文名稱: 具電漿子結構之表面強化拉曼散射生物感測器
Surface-enhanced Raman Scattering Biosensors with Plasmonic Structures
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 72
中文關鍵詞: 電漿子結構表面電漿子表面強化拉曼散射電子束顯影術生物分子間作用分析
外文關鍵詞: surface-enhanced Raman scattering, surface plasmons, E-beam lithography, plasmonic structure, biomolecular interaction analysis
相關次數: 點閱:94下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在生物分子間的作用分析研究上,拉曼光譜逐漸佔有重要的地位,除了能夠解析不同分子的結構之外,還能提供生物分子影像的相關資訊。但是對於非拉曼活性的生物分子而言,如何提升原來微弱信號是一項重要的課題。藉由金屬奈米粒子與表面結構的電場強化,就成了大家矚目的方式。表面拉曼強化散射(surface enhanced Raman scattering,SERS)結合表面電漿子(surface plasmons,SPs)的誘發機制,產生幾個數量級的電場強化效應,來放大感測器表面的生物分子檢測訊號,達到可以解析的程度。
    本論文首先將自備的金與銀奈米粒子,利用單一自我聚集層(self assembly monolayer,SAM)技術,排列固定在金屬薄膜表面,以達到侷限(localized)電場強化效果。然而銀奈米粒子不如金粒子容易大面積的規則排列,因此藉由電子束顯影術(E-beam lithography)與聚焦離子束(focused ion beam,FIB)直接書寫的製程方式,來製作可控制、更多樣式的電漿子結構(plasmonic structures)。有了這些電漿子粒子與結構輔助後,我們利用衰逝全反射(attenuated total reflection,ATR)的方式來激發DNA之拉曼光譜,並得到初步的結果。

    Raman spectrum is becoming an important tool for biomolecular interaction analysis.It is not only to be utilized to analyze various biomolecular structures, but also provides a possibility to grab biomolecule structural images. However, most of biomolecules are non-active Raman
    molecules, and hence how to enhance their tiny Raman signals is a great challenge. With the helps of metal nanoparticles and surface structures to enhance local electric fields, the Raman signals will be detectable.
    Surface-enhanced Raman scattering (SERS) with an inducement mechanism by exciting surface plasmons (SPs) could result in a several order electric field magnified effects and then enhance surface biomolecular detection
    signals detectable.
    In this thesis, prepared metal nanoparticles is first arranged and immobilized on metal film surface by using a self assembly monolayer (SAM) technique to enhance the localized electric fields. Silver nanoparticles are not
    easy to form a larger uniform active area like gold nanoparticles, so an electron-beam lithographic process and a focused ion beam (FIB) direct writing are utilized to develop more controllable and various plasmonic structures. With the enhancement of these plasmonic particles and structures,an attenuated-total-reflection (ATR) Raman excitation is operated to detect the Raman signals of DNA molecules preliminarily.

    摘要………………………………………Ⅰ Abstract…………………………………Ⅲ 誌謝………………………………………Ⅵ 表目錄……………………………………Ⅸ 圖目錄……………………………………Ⅹ 第一章 序論………………………………1 1.1 前言……………………………………1 1.2 研究動機………………………………2 1.3 文獻回顧………………………………3 1.4 論文架構………………………………5 第二章 拉曼散射與電漿子強化……………6 2.1 表面強化拉曼散射效應………………6 2.2 物理機制與化學機制…………………16 2.1.1 物理機制……………………………17 2.1.2 化學機制……………………………20 2.3 表面電漿子……………………………22 2.4 粒子電漿子……………………………26 第三章 結構分析與數值模擬………………30 3.1 有限差分時域法………………………30 3.2 拉曼活性基材的設計…………………31 3.3 模擬分析與討論………………………36 第四章 電漿子結構的製作與量測 ………37 4.1 金與銀奈米粒子的規則排列…………37 4.1.1 藥品及實驗器材……………………37 4.1.2 奈米金銀粒子的製作………………39 4.1.3 奈米金銀粒子自組裝排列…………40 4.2 電漿子結構製作………………………43 4.2.1 電子束顯影…………………………43 4.2.2 聚焦離子束…………………………48 4.2.3 奈米結構的電場強化測試…………54 第五章 拉曼光譜分析……………………59 5.1 微拉曼光譜儀…………………………59 5.2 DNA探針固定化試驗……………………62 5.3 DNA表面強化拉曼散射光譜……………66 第六章 結論…………………………………70 參考文獻……………………………………71

    1. Fleischmann M., “SERS effect from some compounds,”
    Che. Phys. Lett.26, 163-166 (1974).
    2. Tuan Vo-Dinh, Biomedical Photonics Handbook, SPIE, 2003.
    3. S. Ushioda and Y. Sasaki, “Raman scattering mediated
    by surface-plasmon polariton resonance,” Phys. Rev. B
    27, 1401-1404 (1983).
    4. S. Hayashi, T. Kitagawa, Y. Sekiguchi, T. Kume,
    “Enhanced-Ramanscattering from organic thin films in an
    attenuated total reflection geometry mediated by half-
    leaky guided modes,” Thin Solid Film 342, 249-256
    (1999).
    5. M. Futamata, E. Keim, A. Bruckbauer, D. Schumacher and
    A. Otto,“Enhanced Raman scattering from copper
    phthalocyanine on Pt by use of a Weierstrass prism,”
    Appl. Surf. Sci. 100, 60-63 (1996).
    6. D. Zerulla, G. Isfort, M. Kolbach, A. Otto and K.
    Schierbaum, “Sensing molecular properties by ATR-SPP
    Raman spectroscopy onelectrochemically structured
    sensor chips,” Electrochim. Acta 48,2943-2947 (2003).
    7. M. Futamata, “Surface plasmon polariton enhanced Raman
    scattering of thickness and dielectric properties of
    constituents,” Langmuir 11,3894-3901 (1995).
    8. M. Futamata, “Surface-plasmon-polariton-enhanced Raman
    scattering from self-assembled monolayers of p-
    Nitrothiophenol and p-Aminothiophenol on silver,” J.
    Phys. Chem. 99, 11901-11908 (1995).
    9. M. Futamata, “Application of attenuated total
    reflection surface-plasmon-polariton Raman spectroscopy
    to gold and copper,”Appl. Opt. 36, 364-375 (1997).
    10. M. Futamata, “Highly-sensitive Raman spectroscopy to
    characterize adsorbates on the electrode,” Surf. Sci.
    386, 89-92 (1997).
    11. M. Kerker, D.-S. Wang, and H. Chew, “Surface enhanced
    Raman scattering (SERS) by molecules adsorbed at
    spherical particles,” Appl.Opt. 19, 3373-3388 (1980).
    12. D.-S. Wang and M. Kerker, “Enhanced Raman scattering
    by molecules adsorbed at the surface of colloidal
    spheroids,” Phys. Rev. B 24,1777-1790 (1981).
    13. H. Xu, J. Aizpurua, M. Ka¨ll, and P. Apell,
    “Electromagnetic contributions to single-molecule
    sensitivity in surface-enhanced Raman
    scattering,” Phys. Rev. E 62, 4318-4324 (2000).
    14. G. Kartopu, M. Es-Souni, A.V. Sapelkin, and D.
    Dunstan, “A novel SERS-active substrate system:
    Template-grown nanodot-film structures,”
    phys. stat. sol. (a) 203, No.10, R82-R84 (2006).
    15. D. J. Anderson and M. Moskovits, “A SERS-Active
    System Based on Silver Nanoparticles Tethered to a
    Deposited Silver Film,” J. Phys. Chem.B 110, 13722-
    13727 (2006).
    16. H. Bethe, G. Placzek, Phys. Rev. 51, 450 (1937).
    17. Katrin Kneipp, Harald Kneipp, lrving Itzkan,
    Ramachandra R. Dasari,Michael -S. Feld,
    “Ultrasensitive Chemical Analysis Raman
    Spectroscopy,” Chem. Rev. 99, 2957-2975 (1999).
    18. R. H. Ritchie, “Plasma losses by fast electrons in
    thin films,” Phys. Rev.106, 874-881 (1957).
    19. H. Raether, Surface plasmons on smooth and rough
    surfaces and on gratings, Springer-Verlag Berlin
    Heidelberg, 1988.
    20. A. D. Boardman, Electromagnetic surface modes, New
    York: Wiley, ch.9, 1982.
    21. B. T. Draine and P. J. Flatau, “Discrete dipole
    approximation for scattering calculations,” J. Opt.
    Soc. Am. A 11, 1491-1499 (1994).
    22. Ch. Hafner, The Generalized Multipole Technique for
    Computational Electromagnetics, Boston: Artech House,
    1990.
    23. Allen Taflove, Computational electrodynamics: the
    finite-difference time-domain method, Boston: Artech
    House, 1995.
    24. D. Mackowski and M. Mishchenko, “Calculation of the T
    matrix and the scattering matrix for ensembles of
    spheres,” J. Opt. Soc. Am. A 13, 2266-2278 (1996).
    25. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R.
    Smith, and S. ˇSchultz,“Interparticle coupling
    effect on plasmon resonances of nanogold
    particles,” Nano Letters 3, 1087-1090 (2003).
    26. P. C. Lee and D. Meisel, “Adsorption and Surface-
    Enhanced Raman of Dyes on Silver and Gold Sols,” J.
    Phys. Chem. 86, 3391-3395 (1982).

    下載圖示 校內:2009-08-27公開
    校外:2009-08-27公開
    QR CODE