簡易檢索 / 詳目顯示

研究生: 謝承諺
Hsieh, Cheng-Yen
論文名稱: 利用奈米碳管及矽化鈦之溫度、壓力感測器製備及特性量測
Fabrication and Characterization of Temperature and Pressure Sensor made by CNT or Titanium Silicide Materials
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 75
中文關鍵詞: 感測器奈米碳管矽化鈦微機電技術
外文關鍵詞: micro sensor, Carbon nanotubes, Titanium Silicide, MEMS technology
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究方向為開發一微型感知器,而感知器即為感測器,以奈米碳管及金屬矽化物可以製成薄膜感測層而承受高電流密度而不會損壞,同時具有壓阻和熱阻特性,是理想的溫度、壓力感測器材料。因此本研究以目前新興的奈米材料-奈米碳管及具備高熔點之矽化鈦,各別作為感測器的主要材料。
    薄膜感測器除了本身具有奈米級的極微小感測層厚度,並且具有高比表面積的特性,在這兩個有別於傳統感測器的優勢下,可大幅度地提高對於溫度、壓力變化偵測的靈敏度。除此之外,本研究同時導入微機電技術,利用黃光微影製程將奈米碳管感測器的圖案微小化,此一步驟可有效地提高其本身對於感測的解析度。
    本研究各別應用於感測溫度、量測氣壓的環境,如溫度感測器將應用於高溫環境,奈米碳管溫度感測器在650℃以下、矽化鈦溫度感測器在300℃以下感測能力較好。壓力感測器則將氣體輸入封裝的元件之內迫壓感測層進行量測,應用於外加壓力4大氣壓之間。是故壓力感測器藉由氣壓產生阻值變化,所以感測器和元件需密閉封裝。而奈米碳管感測器由於增加黃光製程定義其路徑線路,在製程中將其上方鍍上一層高溫保護層包覆著奈米碳管,使其溫度可承受至650℃而不會導致損壞。
    除此之外,為了解所製備的感測器之效益,進一步進行解析度、靈敏度及反應時間等分析,也對壓力感測器進行溫度校正。本研究以微機電製程及微奈米技術針對奈米碳管及矽化鈦作為感測器的主要材料,適用於微機電製程及具備極高之熱穩定性,極其適合應用於溫度、壓力量測。

    In this research, I want to develop a micro sensor. Consider about the operation principle of sensor, when I minify the size of the sensor, the response time would be much shorter and the sensitivity would be better. In addition, the sensor would operate under high temperature environment such as above 110℃ (for temperature sensor) or test under 4 times atmospheric pressure (for pressure sensor). In this way, the temperature sensor should work successfully at high temperature and the pressure sensor should design in close environment. The materials of temperature sensor working by direct contact such as platinum or thermocouple are damaged when operating on high temperature and high current density. And then those materials are not easy to minify the size of sensor to nanoscale.
    Carbon nanotubes (CNTs) and titanium silicide are well material to fabricated excellent sensitivity sensor, because CNTs have nanoscale size and high surface-area ratio would enhance the sensitivity for temperature or pressure. Titanium Silicide have high melting point. And then both have well mechanical properties such as high thermal stability, CNTs could withstand about 650℃ in vacuum and deposition oxide layer without burning. Titanium Silicide could measure under 400℃. CNTs and Titanium Silicide could work on high temperature and high current density without damage. In addition, I could improve the temperature and pressure sensor resolution by pattern the sensor miniaturization using MEMS technology and photolithography process.
    Therefore, I believe CNTs and Titanium Silicide would be well material of the temperature and pressure sensor in this research. Furthermore, we analysis resolution, sensitivity, response time and correction of pressure sensor. Then I fabricated CNTs & Titanium Silicide sensor successfully by MEMS technology.

    摘要 I Abstract III 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 序論 1 1.1 研究背景與前言 1 1.2 研究動機與目的 2 1.3 奈米碳管概論 3 1.3.1 奈米碳管的發現 3 1.3.2 奈米碳管的結構與特性 3 1.3.3 奈米碳管的成長機制 4 1.3.4 奈米碳管製備種類 6 1.4 奈米碳管之相關文獻 8 第二章 溫度、壓力感測器原理及文獻回顧 9 2.1 溫度、壓力感測器原理 9 2.2 溫度、壓力感測器之文獻回顧 11 第三章 實驗方法與實驗設備 14 3.1 實驗材料 14 3.2 光罩設計 15 3.3 溫度、壓力感測器之製作 16 3.3.1 單壁奈米碳管薄膜溫度、壓力感測器之製作 16 3.3.2 矽化鈦薄膜溫度、壓力感測器之製作 20 3.3.3 壓力感測器元件製作 23 3.4 溫度與壓力感測器分析儀器 25 3.5 溫度與壓力感測器元件製作設備 26 第四章 實驗結果與討論 29 4.1 單壁奈米碳管薄膜成長與特性 29 4.1.1 單壁奈米碳管製作 29 4.1.2 單壁奈米碳管特性分析 31 4.2 奈米碳管薄膜溫度、壓力感測器之量測分析 33 4.2.1 奈米碳管薄膜溫度感測器於常溫量測 33 4.2.2 奈米碳管薄膜溫度感測器於高溫量測 35 4.2.3 奈米碳管薄膜壓力感測器量測 37 4.3 矽化鈦薄膜溫度、壓力感測器之量測分析 39 4.3.1 矽化鈦薄膜溫度感測器於常溫量測 39 4.3.2 矽化鈦薄膜溫度感測器於高溫量測 40 4.3.3 矽化鈦薄膜壓力感測器量測 42 4.4 TCR、Gauge Factor與Time Constant特性 44 第五章 結論 47 參考文獻 49

    【1】 H. W. Kroto, A. W. Allaf and S. P. Balm, “C60 Buckminsterfullerene,” Chem. Rev., Vol. 91, 1213-1235, (1991)
    【2】 S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56-58, (1991)
    【3】 M. S. Dresselhaus, G. Dresslhaus and R. Saito, ”Physics of Carbon Nanotubes,” Carbon, Vol. 33, No. 7, 883-891, (1995)
    【4】 J. Kong, A. M. Cassell, H. Dai, ”Chemical vapor deposition of methane for single-walled carbon nanotubes,” Chemical Physics Letters, Vol. 292, No.4-6, 567-574, (1998)
    【5】 V. Ivanov, A. Fonseca, J. B. Nagy, A. Luacs, P. Lambin, D. Bernaerts and X. B. Zhang, ”Catalytic Production and Purification of Nanotubules Having Fullerene-Scale Diameters,” Carbon, Vol. 33, No. 12, 1727-1738, (1995)
    【6】 A. Fonseca, K. Hernadi, P. Piedigrosso, J.-F. Colomer, K. Mukhopadhyay, R. Doome, S. Lazarescu, L.P. Biro, Ph. Lambin, P.A. Thiry, D. Bernaerts, J. B.Nagy, ”Synthesis of single- and multi-wall carbon nanotubes over supported Catalysts,” Appl. Phys. A 67, 11-22, (1998)
    【7】 C. Laurent, E. Flahaut, A. Peigney and A. Rousset, ”Metal nanoparticles for the catalytic synthesis of carbon nanotubes,” New J. Chem., No. 11, 1229-1237, (1998)
    【8】 E. Flahaut , A. Govindaraj, A. Peigney , Ch. Laurent , A. Rousset , C.N.R. Rao, ”Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions,” Chemical Physics Letters, Vol. 300, No.1-2, 236-242, (1999)
    【9】 P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, R. E. Smalley, ”Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chemical Physics Letters, Vol. 313, 91-97, (1999)
    【10】 A. Peigney, Ch. Laurent, F. Dobigeon, and A. Rousset, ”Carbon nanotubes grown in situ by a novel catalytic method,” J. Mater. Res., Vol. 12, No. 3, 613-615, (1997)
    【11】 A. Peigney, P. Coquay, E. Flahaut, R. E. Vandenberghe, E. D. Grave and C. Laurent, ”A Study of the Formation of Single- and Double-Walled Carbon Nanotubes by a CVD Method,” J. Phys. Chem. B, 9699-9710, (2001)
    【12】 S.Iijima & T. Ichihashi, ”Single-shell carbon nanotubes of 1-nm diameter,“ Nature 363, 603-605, (1993)
    【13】 A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer and R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes,” Science 26, Vol. 273, No. 5274, 483-487, (1996)
    【14】 H. Sato, K. Hata, K. Hiasa, Y. Saito, ”Low temperature growth of carbon nanotubes by alcohol catalytic chemical vapor deposition for field emitter applications,” J. Vac. Sci. Technol. B, Vol. 25, No.2, 579-582, (2007)
    【15】 A. J. Hart, A. H. Slocum, L. Royer, ”Growth of conformal single-walled carbon nanotube films from Mo/Fe/Al2O3 deposited by electron beam evaporation,” Carbon , Vol. 44, No.2, 348-359, (2006)
    【16】 J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate & H. Dai, ”Synthesis of individual singlewalled carbon nanotubes on patterned silicon wafers,” Nature, Vol. 395 , 878-881, (1998)
    【17】 L. C. Jin, K. D. Woon, L. T. Jae, C. Y. Chul, P. Y. Soo, K. W. Seok, L. Y. Hee, C. W. Bong, L. N. Sung, K. J. Min, C. Y. Gak, Y. S. Chang, ”Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition,” Applied Physics Letters, Vol.75 , No. 12, 1721-1723, (1999)
    【18】 D. E. Resasco, W. E. Alvarez, F. Pompeo, L. Balzano, J. E. Herrera, B. Kitiyanan and A. Borgna, ”A scalable process for production of single walled carbon nanotubes (SWNTs) by catalytic disproportionation of CO on a solid catalyst,” Journal of Nanoparticle Research, Vol. 4, No. 1-2, 131-136, (2002)
    【19】 S. Maruyama, Y. Miyauchi, T. Edamura, Y. garashi, S. Chiashi, Y. Murakami, ”Synthesis of single-walled carbon nanotubes with narrow diameter-distribution from fullerene,” Chemical Physics Letters, Vol. 375, 553-559, (2003)
    【20】 T. Komukai, K. Aoki, H. Furuta, M. Furuta, K. Oura, T. Hirao. "Density control of carbon nanotubes through the thickness of Fe/ Al multilayer catalyst," Jpn. J. Appl. Phys. 45. p.6043~6045, (2006)
    【21】 M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson and W. I. Milne. "Growth process conditions of vertically aligned carbon nanotubes usingplasma enhanced chemical vapor deposition," J. Appl. Phys. 90, P.5308 (2001)
    【22】 S. Honda, Y. G. Baek, K. Y. Lee, T. Ikuno, T. Kuzuoka, J. T. Ryu, S. Ohkura, M. Katayama, K. Aoki, T. Hirao and K. Oura, "Synthesis of randomly oriented carbon nanotubes on SiO2 substrates by thermal chemical vapor deposition toward field electron emitters," Thin Solid Films, 464-465, p.290~294 (2004).
    【23】 O. Smiljanic, T. Dellero, A. Serventi, G. Lebrun, B. L. Stansfield, J. P. Dodelet, M. Trudeau and S. Désilets. "Growth of carbon nanotubes on Ohmically heated carbon paper," Chem. Phys. Lett. 342 p.503~509 (2001).
    【24】 Y. H. Wang, J. Lin, C. H. A. Huan and G. S. Chen. "Synthesis of large area aligned carbon nanotube arrays from C2H2–H2 mixture by rf plasma-enhanced chemical vapor deposition," Appl. Phys. Lett.79 P.680 (2001)
    【25】 Shigeo Maruyama, Ryosuke Kojima, Yuhei Miyauchi, Shohei Chiashi, Masamichi Kohno, "Low-temperature synthesis of high purity single walled carbon nanotubes from alcohol," Chemical Physics Letters, 360, P.229–234 (2002)
    【26】 Hideki Sato, Koichi Hata, and Ken Hiasa. "Low temperature growth of carbon nanotubes by alcohol catalytic chemical vapor deposition for field emitter applications," J. Vac. Sci. Technol. B25, P.579(2007)
    【27】 Tzong-Ming Wu ,Yen-Wen Lin. "Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties," Polymer, 47, P.3576~3582 (2006)
    【28】 Victor T. S. Wong, and Wen J. Li, "Bulk carbon nanotube as thermal sensing and electronic circuit elements," IEEE 7761 p.844-847 (2003).
    【29】 Ralph spolenak, Philipp Kohler-Redlich, and Manfred Ruhle, "Electrical transport in pure and boron-doped carbon nanotubes," Applied Physics Letters, Vol.74, No.21, p.3149–3151 (1999)
    【30】 R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess and R. E. Smalley, "Conductivity enhancement in single walled carbon nanotube bundles doped with K and Br," Nature 388, p.255-257 (1997).
    【31】 Carmen K. M. Fung and Wen J. Li, "Ultra low power polymer thin film encapsulated carbon nanotube thermal sensors," 4th IEEE conference on Nanotechnology (2004)
    【32】 Stampfer C, Helbling T, Obergfell D, Sch¨oberle B, Tripp M K, Jungen A, Roth S, Bright V M and Hierold C, "Fabrication of single walled carbon nanotube based pressure sensors" Nano Lett. Vol. 6, No. 2 p.233-237 (2006)
    【33】 A. A. Naem and L. Y. Chee, ”Variation of cobalt silicide resistivity with temperature,” J. Appl. Phys. 79, 9149 (1996)
    【34】 C. H. Ho, S. Prakash, H. J. Doerr, C. V. Deshpandey and R. F. Bunshah, “Oxidation of molybdenum silicide thin film temperature sensors,” Surface and Coatings Technology, 39/40 (1989)
    【35】 E Vereshchagina, R A M Wolters and J G E Gardeniers, “The development of titanium silicide–boron-doped polysilicon resistive temperature sensors,” J. Micromech. Microeng. 21 (2011)
    【36】 Guenter Schultes, Markus Schmitt, Dirk Goettel, Olivia Freitag-Weber, “Strain sensitivity of TiB2, TiSi2, TaSi2 and WSi2 thin films as possible candidates for high temperature strain gauges,” Sensors and Actuators A 126 p.287–291 (2006)

    無法下載圖示 校內:2018-09-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE