簡易檢索 / 詳目顯示

研究生: 黃國展
Huang, Kuo-Chan
論文名稱: 利用電鍍技術製備二硒化銅銦鋁薄膜太陽能電池之研究
Investigation of Cu(In,Al)Se2 thin film solar cell fabricated by using electrodeposition technique
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 155
中文關鍵詞: 電鍍技術二硒化銅銦鋁薄膜太陽能電池十二烷基硫酸鈉離子濃度循環伏安法成核機制雙層結構融熔態
外文關鍵詞: electrodeposition technique, Cu(In,Al)Se2 thin film, solar cell, Sodium dodecyl sulfate, ionic concentration, cyclic Voltammetry, nucleation mechanism, binary structure, liquid phases
相關次數: 點閱:150下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用更低成本的電鍍技術來研究製備二硒化銅銦鋁薄膜太陽能電池。本論文研究內容主要可分成四大部分,首先利用循環伏安法來了解各元素與混合物的還原電位並定義出適當的共電鍍電壓,再搭配X光繞射分析推論出製備二硒化銅銦鋁薄膜可能的化學反應過程。研究中發現添加十二烷基硫酸鈉(Sodium dodecyl sulfate,SDS)可使各元素的還原電位更為接近以提供更好的共電鍍環境,同時改變薄膜的成核機制從原先的瞬間成核轉為步階成核,使得前驅薄膜的表面形貌變的平坦。另外經由調整電鍍電壓則可使得薄膜的化學劑量比從含銅量多變成含銅量少,而表面形貌從圓球狀結構變成花椰菜結構。其次則針對二硒化銅銦鋁薄膜的化學劑量以及能帶做調整,此研究中經由調整電鍍液中的鋁與銦濃度,我們已經能控制薄膜的鋁比鋁加銦含量從0.21到0.42,而相對應的能帶變化可從1.17eV到1.48eV,藉此可以使得二硒化銅銦鋁薄膜的能隙更符合理想太陽光譜理論能帶。此外X光繞射分析結果證明了所有二硒化銅銦鋁薄膜的主要成長方向乃是沿著(112)、 (204/220)以及(116/312)結晶面。其三則針對二硒化銅銦鋁薄膜的表面形貌以及薄膜回火前後關係做探討,研究發現經由提升鍍液中的銅濃度能夠改變薄膜的成核機制從瞬間成核轉為步階成核,而瞬間成核機制成長下的前驅薄膜則表現出銅量少、表面粗糙的花椰菜或是三角形形貌。而步階成核機制下成長出的前驅薄膜則表現出銅量多、表面平整的圓球狀形貌。銅量多的前驅薄膜在經由回火處理後能夠得到一個較佳品質、平整緊密且大結晶顆粒的二硒化銅銦鋁薄膜,能更有利於當作太陽能電池的吸收層薄膜。而我們更是首創發表有效率的電鍍二硒化銅銦鋁薄膜太陽能電池,目前效率為1.96% ,開路電壓為0.189mV、短路電流29.21mA/cm2、填充因子35.4%。其四則利用雙層前驅膜結構來改善二硒化銅銦鋁薄膜的表面形貌以及進行二硒化銅銦鋁薄膜與硫化鎘(CdS)界面之探討,研究發現在雙層結構中上層的銅硒化合物在回火過程中能夠形成融熔態,藉此提高元素的移動能力進而促使薄膜表面變平整、粗糙度降低到100nm以下並且形成大顆粒的結晶。後續的硫化鎘沉積也證明了在雙層結構上成長的硫化鎘薄膜有較好的表面覆蓋性與平整度能有效降低漏電流的分佈情況,從暗電流的量測結果可以明顯發現漏電流從原先的4.02 x 10-4 A/cm2 (單層結構)降到4.26 x 10-5 A/cm2 (雙層結構),下降了一個級數。而太陽能電池效率方面則可藉由開路電壓與短路電流的改善從原先的0.52% (單層結構)提升到1.44% (雙層結構)。

    In this dissertation, we exploit the low cost electrodepositon technique to investigate the fabrication of Cu(In,Al)Se2 thin film solar cell. The research content is divided into four segments. In the first segment, the cyclic voltammetric studies are used to realize the element’s and compounds reduction potentials and identify a suitable potential as co-electrodeposition. In combination with the XRD analysis, chemical reaction mechanism for presuming the formation routes of quaternary Cu(In,Al)Se2 films are defined. Furthermore, It is found that the SDS additive promotes the deposited potential of each element closing to each other for a better co-elecorodeposition environment, and simultaneously change the nucleation mechanism of Cu(In,Al)Se2 films from instantaneous nucleation to progressive nucleation. This feature is helpful to obtain a smooth precursor Cu(In,Al)Se2film and round-like structure. In addition, we find the stoichiometry of Cu(In,Al)Se2 film changes from Cu-rich to Cu-poor type and the morphology of Cu(In,Al)Se2 film transfers from round-like structure to cauliflower-like structure by increasing deposited potential.
    In the second segment, we focus on the adjustment of stoichiometry and optical energy band gap of Cu(In,Al)Se2 films. By adjusting the Al and In concentration is solutions, the ratio of Al to (Al+In) in Cu(In,Al)Se2 films can be successfully controlled from 0.21 to 0.42, and the corresponding optical energy band gap of Cu(In,Al)Se2 films can be varied from1.17 eV to 1.48 eV to match with optimum band gap value for the solar spectrum. Furthermore, X-ray diffraction (XRD) patterns reveal three preferred growth orientations along the (112), (204/220), and (116/312) planes for all species.
    In the third segment, we focus on the surface morphology of Cu(In,Al)Se2 films and the relationship between precursor Cu(In,Al)Se2 films and post-annealed Cu(In,Al)Se2 films. The nucleation mechanism of electrodeposited Cu(In,Al)Se2 films change from instantaneous nucleation to progressive nucleation is observed by increasing the copper concentration. The research results exhibit that precursor Cu(In,Al)Se2 films had roughly cauliflower-like and triangular structures with Cu-poor composition at instantaneous nucleation mechanism, whereas smooth and round structures with Cu-rich composition at progressive nucleation mechanism. After post-annealing treatment, the surface morphology of Cu-rich Cu(In,Al)Se2 films shows high quality with compact structures and large grains, that is more beneficial to be the absorber layer of solar cell. A 1.96% efficient Cu(In,Al)Se2 thin film solar cell fabricated by electrodeposition technique is first time achieved and publish in international journal. The corresponding values of open-circuit voltage (Voc), short-circuit current (Jsc), fill factor (FF), Rsh and Rs are 0.189 V, 29.21 mA/cm2, 35.4%, 125Ω and 2.82Ω, respectively.
    In the fourth segment, the binary structure precursor Cu(In,Al)Se2 films are utilized to improve the surface morphology and of Cu(In,Al)Se2 films and investigate the characteristics of CdS and Cu(In,Al)Se2 interface. It is found that the upper Cu–Se compounds in binary structure can form a liquid phases during the post-annealing process, which enhances elemental migration and promotion of large grains and smooth surface formation and reduction of RMS roughness less than 100 nm. The subsequently deposition of CdS film on binary structure Cu(In,Al)Se2 films exhibit good spreadability and smoothness, leading to efficiently diminish the distribution of leakage current paths. The dark current–voltage characteristics of the CdS/CIAS heterojuncions shows that the reverse dark current density is decreased by approximately one order of magnitude from 4.02 x 10-4 A/cm2 (single structure) to 4.26 x 10-5 A/cm2 (binary structure). Furthermore, the conversion efficiency of CIAS solar cells is enhanced from 0.52 % (single structure) to 1.44 % (binary structure) with increase in Voc and Jsc.

    Abstract (chinese)…………………………………………………………I Abstract (English) ……………………………………………………….IV Contents ………………………………………………………………….IX Figure Captions ………………………………………………………..XIII Table Captions ………………………………………………………….XX Chapter 1 …………………………………………………………………..1 1.1 Solar energy ……………………………………………………….1 1.2 Properties of CuInSe2-based materials ………………………….4 1.2.1 Structure and composition of CuInSe2-based materials …………………5 1.2.2 Electrical Properties of CuInSe2-based materials ………………………..8 1.3 The advantages of Cu(In,Al)Se2 material ……………………….9 1.4 Fabrication methods of Cu(In,Al)Se2 thin film ………………..10 1.5. Objectives ………………………………………………………12 1.6 Thesis Organization ……………………………………………..15 Chapter 2 …………………………………………………………………17 2.1 Solar Cell Principle ……………………………………………...17 2.2 Solar Cell Characterization …………………………………….18 2.2.1 Current-Voltage Characteristics ………………………………………..18 2.2.2 Quantum Efficiency ……………………………………………………22 2.3 Electrodeposition principle and Electrochemical analysis technology ……………………………………………………………23 2.3.1 Electrodeposition principle ……………………………………………..23 2.3.2 Nucleation and growth mechanisms ……………………………………27 2.3.3 Chronoamperometry ……………………………………………………32 2.3.4 Linear Sweep Voltammetry …………………………………………….33 Chapter 3 ………………………………………………………………....37 3.1 Fabrication of Cu(In,Al)Se2 precursor films .………………….37 3.1.1 The effects of SDS additive and applied potential ……………………..37 3.1.2 Adjustment of [Al] and [In] concentration in solutions ………………..38 3.1.3 Adjustment of [Cu] concentration in solutions ………………………...38 3.1.4 Study of binary-structure precursor Cu–Se/CIAS films ……………….39 3.2 Selenization treatment ………………………………………….40 3.3 Thin Film Analysis ……………………………………………...41 3.3.1 Scanning Electron Microscope …………………………………………42 3.3.2 Atomic Force Microscope ……………………………………………...42 3.3.3 Conductive Atomic Force Microscope …………………………………46 3.3.4 X-ray diffraction ………………………………………………………..48 3.3.5 Raman spectroscopy ……………………………………………………48 3.3.6 Ultraviolet and Visible Spectrophotometer …………………………….49 3.4 Fabrication of the Solar Cells …………………………………..50 3.5 Solar Cell Device Measurement ………………………………..51 Chapter 4 …………………………………………………………………52 4.1 Cyclic voltammetric studies of electrodeposited Cu(In,Al)Se2 thin films with sodium dodecyl sulfate (SDS) additive ……………..52 4.1.1 Cyclic voltammograms of unitary Cu, In, Al and Se systems …............52 4.1.2 Cyclic voltammograms of binary Cu-Se, In-Se and Al-Se systems ……56 4.1.3 Cyclic voltammograms of ternary Cu-Al-Se and Cu-In-Se systems and quaternary Cu-In-Al-Se system ………………………………………………62 4.1.4 Summary ……………………………………………………………….66 4.2 Chronoamperometric studies for the nucleation mechanism of electrodeposited Cu(In,Al)Se2 films with SDS additive and various Cu concentration …………………………………………………….67 4.2.1 The influence of SDS on the nucleation mechanism …………………..68 4.2.2 The influence of Cu concentration on the nucleation mechanism ……..70 4.2.3 Summary ……………………………………………………………….72 4.3 Investigation of deposited potential for the co-electrodeposition method ……………………………………………………………….73 4.3.1 Surface morphology and composition of CIAS films …………………73 4.3.2 The quality and composition phase of CIAS films ………………….....75 4.3.3 The optical energy band gap of CIAS films ……………………………77 4.3.4 Summary ……………………………………………………………….79 4.4 Effect of [Al] and [In] Molar Ratio in Solutions on the Growth and Microstructure of Electrodeposition Cu(In,Al)Se2 Films ……80 4.4.1 Surface morphology and composition of CIAS films ………………….80 4.4.2 The quality and composition phase of CIAS films …………………….84 4.4.3 The optical energy band gap of CIAS films ……………………….…...87 4.4.4 Summary ……………………………………………………………….90 4.5 Effect of [Cu] concentration on the growth mechanism and performance of electrodeposited Cu(In,Al)Se2 solar cells ………..90 4.5.1 Surface morphology and composition of precursor CIAS films ………90 4.5.2 Surface morphology and composition of post-annealed CIAS films...... 95 4.5.3 The quality and composition phase of post-annealed CIAS films …….97 4.5.4 The optical energy band gap of post-annealed CIAS films …………..103 4.5.5 The performances of electrodeposited CIAS solar cells ……………...105 4.5.6 Summary ……………………………………………………………...107 4.6 Investigation of Cu–Se/CIAS binary structure precursors for Cu(In,Al)Se2 thin film solar cells ……………………….…...…….109 4.6.1 Surface morphology, composition and roughness of Cu-poor CIAS films ………………………………………………………………………………109 4.6.2 Surface morphology, composition and quality of single- and binary- structure precursor CIAS films ……………………………………………...112 4.6.3 Surface morphology, composition and roughness of single- and binary- structure post-annealed CIAS films ………………………………………...116 4.6.4 The quality and composition phases of single- and binary- structure post-annealed CIAS films …………………………………………………..120 4.6.5 Surface morphology, roughness and conductive property of CdS film deposited on single- and binary- structure post-annealed CIAS films ……...123 4.6.6 The performances of electrodeposited CIAS solar cells with single- and binary-structure post-annealed CIAS films …………………………………128 4.6.7 Summary ……………………………………………………………...130 Chapter 5 ………………………………………………………………..132 References ………………………………………………………………137 Publication List …………………………………………………………152 Vita ………………………………………………………………………154

    [1] L.L. Kazmerski, D. Gwinner, A. Hicks, “Best research-cell efficiencies,” 2011.
    [2] M.E. Calixto, P.J. Sebastian, R.N. Bhattacharya, Rommel Noufi, “Compositional and optoelectronic properties of CIS and CIGS thin films formed by electrodeposition,” Sol. Energy Mater. Sol. Cells, vol. 59, pp. 75-84, 1999.
    [3] T. Nakano, T. Suzuki, N.i Ohnuki, S. Baba, Alloying and electrical properties of evaporated Cu–In bilayer thin films,” Thin Solid Films, vol.334, pp. 192-195, 1998.
    [4] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, ‘‘New world record efficiency for Cu (In, Ga) Se2 thinfilm solar cells beyond 20%,’’ Prog. Photovoltaics Res. Appl., Vol. 19, pp. 894-897, 2011.
    [5] MiaSolé Thin Film Solar, Dec. 2, 2010.
    [6] S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, W. N. Shafarmanb, “High-efficiency solar cells based on Cu(InAl)Se2 thin films,” Appl. Phys. Lett., vol. 81, pp. 1350-1352, 2002.
    [7] M. A. Contreras, L. M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi1, E. Rudiger-Voigt and W. Mannstadt” Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency,” Prog. Photovolt: Res. Appl. Vol. 20, pp. 843-850, 2012.
    [8] S. Jung, S. J. Ahn, J. H. Yun, J. Gwak, D. Kim, K. Yoon” Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique,” Curr. Appl. Phys., vol. 10, pp. 990-996, 2010.
    [9] S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, W. N. Shafarman, “ High-efficiency solar cells based on Cu(InAl)Se2 thin films, Appl. Phys. Lett. , vol. 81, pp. 1350-1352, 2002.
    [10] M. Omar, A. Nadhir, B. Assia, S. A. Mohamed, “Electrodeposition and Characterization of Cu(In, Al)Se2 for Applications in Thin Film Tandem Solar Cells,” Mater. Sci. and Appl., vol. 4, pp. 712-717, 2013.
    [11] J. Bekker, “Band-gap engineering in CuIn(Se,S)2 absorbers for solar cells” Sol. Energy Mater. Sol. Cells., vol. 93, pp. 539-543, 2009.
    [12] Z. Djebbour, A. Migan Dubois, A. Darga, D. Mencaraglia, C. Bazin , J. P. Connolly, J. F. Guillemoles , D. Lincot, B. Canava , A. Etcheberry “Comparison of optical and electrical gap of electrodeposited CuIn(S,Se)2 determined by spectral photo response and I–V–T measurements,” Thin Solid Films, vol. 515 , pp. 6233–6237, 2007.
    [13] P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire, W. N. Shafarmana, “CuIn1−xAlxSe2 thin films and solar cells,” J. Appl. Phys., vol. 91, pp. 10153–10156, 2002.
    [14] J. Lo´pez-Garc´ıa, C. Maffiotte, C. Guille´n, “Wide-bandgap CuIn1−xAlxSe2 thin films deposited on transparent conducting oxides,” Sol. Energy Mater. Sol. Cells., vol. 94, pp.1263–1269, 2010.
    [15] T. Hayashi, T. Minemoto, G. Zoppi , I. Forbes , K. Tanaka , S. Yamada, T. Araki, H. Takakura, “Effect of composition gradient in Cu(In,Al)Se2 solar cells ,” Sol. Energy Mater. Sol. Cells., vol. 93, pp.922-925, 2009.
    [16] M. Sugiyama, A. Umezawa, T. Yasuniwa, A. Miyama, H. Nakanishi, S.F. Chichibu, “Growth of single-phase Cu(In,Al)Se2 photoabsorbing films by selenization using diethylselenide,” Thin Solid Films., vol. 517, pp. 2175-2177, 2009.
    [17] Y. Bharath Kumar Reddy, V. Sundara Raja,” Preparation and characterization of CuIn0.3Al0.7Se2 thin films for tandem solar cells,” Sol. Energy Mater. Sol. Cells., vol. 90, pp. 1656-1665, 2006.
    [18] K. Srinivas A J. N. Kumar A G. H. Chandra S. Uthanna,” Structural and optical properties of CuIn0.35Al0.65Se2 thin films” J Mater Sci: Mater Electron., vol. 17, pp. 1035-1039, 2006.
    [19] G. H. Chandra, C. Udayakumar, S. Rajagopalan, A. K. Balamurugan, and S. Uthanna, ”Influence of substrate temperature on structural, electrical and optical properties of flash evaporated CuIn0.60Al0.40Se2 thin films,” Phys. Status Solidi A ., vol. 4, pp. 704-710, 2009.
    [20] D. C. Perng, J. W. Chen, C. J. Wu, ”Formation of CuInAlSe2 film with double graded bandgap using Mo(Al) back contact,” Sol. Energy Mater. Sol. Cells., vol. 95, pp. 257-260, 2011.
    [21] J. Olejníček, C.A. Kamler, S.A. Darveau, C.L. Exstrom, L.E. Slaymaker, A.R. Vandeventer N.J. Ianno, R.J. Soukup, ”Formation of CuIn1− xAlxSe2 thin films studied by Raman scattering,” Thin Solid Films., vol. 519, pp. 5329-5334, 2011.
    [22] R. P. Chang, D. C. Perng, “Nano-structured Cu(In,Al)Se2 near-infrared photodetectors,” Thin Solid Films., vol. 529, pp. 238-241, 2013.
    [23] D. Dwyer, I. Repins, H. Efstathiadis, P. Haldar, “Selenization of co-sputtered CuInAl precursor films,” Sol. Energy Mater. Sol. Cells., vol. 94, pp. 598-605, 2010.
    [24] A. Umezawa, T. Yasuniwa, A. Miyama, H. Nakanishi, M. Sugiyama, and S. F. Chichibu, “Preparation of Cu(In,Al)Se2 thin films by selenization using diethylselenide,” Phys. Status Solidi C., vol. 5, pp. 1016-1018, 2009.
    [25] J. López-García , C. Guillén, “CuIn1 − xAlxSe2 thin films obtained by selenization of evaporated metallic precursor layers,” Thin Solid Films., vol. 517, pp. 2240-2243, 2009.
    [26] K. G. Deepa, N. Lakshmi Shruthi, M. Anantha Sunil, J. Nagaraju, “Cu(In,Al)Se2 thin films by one-step electrodeposition for photovoltaics,” Thin Solid Films., vol. 551, pp. 1-7, 2014.
    [27] D. Prasher, P. Rajaram, “Growth and characterization of electrodeposited Cu(In,Al)Se2 thin films,” Thin Solid Films., vol. 519, pp. 6252-6257, 2011.
    [28] J. L. Xu, X. F. Yao, J. Y. Feng, ‘‘The influence of the vacuum annealing process on electrodeposited CuInSe2 films’’, Sol. Energy Mater. Sol. Cells, vol. 73, pp.203-208, 2002.
    [29] X. Donglin, X. Man, L. Jianzhuang, Z. Xiujian, ‘‘Co-electrodeposition and characterization of Cu(In, Ga)Se2 thin films’’, J. Mater. Sci., vol. 41, pp. 1875-1878, 2006.
    [30] A. Duchatelet, G. Savidand, R. N. Vannier, E. Chassaing, D. Lincot,‘‘A new deposition process for Cu (In, Ga)(S, Se)2 solar cells by one-step electrodeposition of mixed oxide precursor films and thermochemical reduction’’, J. Renewable Sustainable Energy, vol. 5, pp. 011203-1-6,2013.
    [31] O. Ramdani, J. F. Guillemoles, D. Lincot, P. P. Grand, E. Chassaing, O. Kerrec, E. Rzepka, ‘‘One-step electrodeposited CuInSe2 thin films studied by Raman spectroscopy’’, Thin Solid Films, vol. 515, pp. 5909-5912, 2007.
    [32] L. Wan, Y. Cao, D. Wang, ‘‘P-type CuInSe2 thin films prepared by selenization of one-step electrodeposited precursors’’, J. Mater. Res., vol. 24, pp.2293-2300, 2009.
    [33] A. M. Hermann, M. Mansour, V. Badri, B. Pinkhasov, C. Gonzales, F. Fickett, M. E. Calixto,P. J. Sebastian, C. H. Marshall, T. J. Gillespie, “Deposition of smooth Cu(In,Ga)Se2 films from binary multilayers,” Thin Solid Films, vol. 74-78, pp. 361-362, 2000.
    [34] C. Guillen, J. Herrero. “Improved selenization procedure to obtain CulnSe2 thin films from sequentially electrodeposited precursors,” J. Electrochem. Soc., vol. 143, pp. 493-498, 1996.
    [35] C. Guillen, J. Herrero., “Improved selenization procedure to obtain CulnSe2 thin films from sequentially electrodeposited precursors,” J. Electrochem. Soc., vol. 143, pp. 493-498, 1996.
    [36] J. Fischer, S. Siebentritt, P. J. Dale, “Synthesis and Characterization of CuInSe2 Thin Films by Annealing of Electrodeposited In2Se3/Cu and In2Se3/CuxSey Stacks,” ECS Trans., vol. 25, pp. 129-142, 2010.
    [37] J. Koo, S. C. Kim, H. Park, W. K. Kim, “Cu(InGa)Se2 thin film photovoltaic absorber formation by rapid thermal annealing of binary stacked precursors ,”Thin Solid Films, vol. 520, pp. 1484-1488, 2011.
    [38] M. E. Calixto, J. Sebastian, “CuInSe2 thin films formed by selenization of Cu–In precursors,” J. mater. Sci., vol. 33, pp. 339-345, 1998.
    [39] T. J. Whang, M. T. Hsieh, Y. C. Kao, S.J. Lee, “A study of electrodeposition of CuInSe2 thin films with triethanolamine as the complexing agent,” Appl. Surf. Sci., vol. 255, pp. 4600-4605, 2009.
    [40] M. Kemell, M. Ritala, H. Saloniemi, M. Leskela, T. Sajavarra, E. Rauhalh, “One-Step Electrodeposition of Cu2-xSe and CuInSe2 Thin Films by the Induced Co-deposition Mechanism,” J. Electrochem. Soc., vol. 147, pp. 1080-1087, 2000.
    [41] Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li, Y. Liu, “Cyclic voltammetry study of electrodeposition of Cu(In,Ga)Se2 thin films,” Electrochim. Acta., vol. 54, pp. 3004-3010, 2009.
    [42] Y. Oda, M. Matsubayashi, T. Minemoto, H. Takakura, “Crystallization of In–Se/CuInSe2 thin-film stack by sequential electrodeposition and annealing,” J. Cryst. Growth, vol. 311, pp. 738-741, 2009.
    [43] F. Kang, J. Ao, G. Sun, Q. He, Y. Sun,” Properties of CuInxGa1-xSe2 thin films grown from electrodeposited precursors with different levels of selenium content, Curr. Appl. Phys., vol. 10, pp. 886-888, 2010.
    [44] M. Benaicha, N. Benouattas, C. Benazzouz, L. Ouahab, “Effect of bath temperature and annealing on the formation of CuInSe2,” Sol. Energy Mater. Sol. Cells., vol. 93, pp. 262-266, 2009.
    [45] D. Xia, J. Li, M. Xu, X. Zhao, “Electrodeposited and selenized CIGS thin films for solar cells,” J. Non-Cryst. Solids, vol. 354, pp. 1447-1450, 2008.
    [46] K. Tsutsumi, T. Minemoto, K. Uzawa1, K. Yaginuma, F. Makuta, and H. Takakura, “Effect of Cu/In Ratio in Crystal Growth of CuInSe2 Thin Films Fabricated by Reduction and Selenization Using Cu and In2O3 Paste Materials,” Jpn. J. Appl. Phys., vol. 50, pp. 121201-121204, 2011.
    [47] J. R. Tuttle, D. S. Albin and R. Noufi, “Thoughts on the microstructure of polycrystalline thin film CuInSe2 and its impact on material and device performance,” Solar Cells, vol. 30, pp. 21-38, 1991.
    [48] T. Markvart and L. Castaner, ”Solar cell: materials, manufacture and operation,” Elsevier Ltd. ,2005.
    [49] T. Wittchen, H.C. Holstenberg, D. Hunerhoff, J.M. Zhang, J. Metzdorf, “Solar cell calibration and characterization: Simplified DSR apparatus,” Proceedings of the 20th IEEE Photovoltaic Specialists Conference, pp. 1251-1257, 1988.
    [50] J. Metzdorf, “Calibration of solar cells. 1: The differential spectral responsivity method,” Applied Optics, vol. 26, pp. 1701-1708, 1987.
    [51] K. Ramanathan, G. Teeter, J. C. Keane and R. Noufi,” Properties of high-efficiency CuInGaSe2 thin film solar cells ,” Thin Solid Films, vol. 480–481, pp. 499- 502, 2005.
    [52] B. Scharifker, G. Hills, “Theoretical and experimental studies of multiple nucleation,” Electrochim. Acta, vol. 28, pp. 879-889, 1983.
    [53] D. Grujicic, B. Pesic, “Electrodeposition of copper: the nucleation mechanisms’’,Electrochimica Acta, vol. 47, pp. 2901-2912, 2002.
    [54] P. P. Prosini, M. L. Addonizio, A. Antonaia, ‘‘Effect of substrate surface treatment on the nucleation and crystal growth of electrodeposited copper and copper–indium alloys’’, Thin Solid Films, vol. 298, pp. 191-196, 1997.
    [55] O. Chyan, T. N. Arunagiri, T. Ponnuswamy, “Electrodeposition of Copper Thin Film on Ruthenium A Potential Diffusion Barrier for Cu Interconnects’’, J. Electrochem. Soc., vol. 150, pp. C347-C350, 2003.
    [56] R. C. Valderrama , M. Miranda-Hernandez , P. J. Sebastian , A. L. Ocampo, ‘‘Electrodeposition of indium onto Mo/Cu for the deposition of Cu(In,Ga)Se2 thin films’’, Electrochim. Acta, vol. 53, pp. 3714-3721, 2008.
    [57] Y. Lai, F. Liu, J. Li, Z. Zhang, Y. Liu, ‘‘Nucleation and growth of metal catalysts. Part I. Electrodeposition of platinum on tungsten’’, J. Electroanal. Chem., vol. 639, pp. 187-192, 2010.
    [58] Y. Martin, C.C. Williams, H. K. Wickramadinghe, “Atomic force microscope–force mapping and profiling on a sub 100‐Å scale ,” Jpn. J. Appl. Phys., vol. 61, pp. 4723, 1987.
    [59] F. J. Giessibl, Ch. Gerber, G. Binnig, “A lowtemperature atomic force/scanning tunneling microscope for ultrahigh vacuum,” J. Vac. Sci. Technol. B., vol 9, pp. 984-988, 1991.
    [60] P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, “Tapping mode atomic force microscopy in liquids,” Appl. Phys. Lett., vol. 64, pp. 1738-1745, 1994.
    [61] R. E. Thomson, J. Moreland, “Development of highly conductive cantilevers for atomic force microscopy point contact measurements,” J. Vac. Sci. Technol. B, vol. 13, pp. 1123-1128, 1995.
    [62] A. Bietsch, M. A. Schneider, M. E. Welland, B. Michel, ” Electrical testing of gold nanostructures by conducting atomic force microscopy,” J. Vac. Sci. Technol. B., vol. 18, pp. 1160-1170, 2000.
    [63] J. C. Manifacier, M. D. Murcia, J. P. Fillard,” Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure,” Thin Solid Films, vol. 41, pp. 127-135, 1977.
    [64] M. A. Green, “Solar cells: Operating principles, technology, and system applications, Englewood Cliffs,” NJ, Prentice-Hall, Inc., 1982.
    [65] R. Yu, T. Ren , C. Li, “Effect of triethanolamine and sodium dodecyl sulfate on the formation of CuInSe2 thin films by electrodeposition” Thin Solid Films, vol. 518, pp. 5515-5519, 2010.
    [66] Y. Lai, F. Liu, J. Li, Z. Zhang, Y. Liu, “Nucleation and growth of selenium electrodeposition onto tin oxide electrode” J. Electroanal. Chem., vol. 639, pp. 187-192, 2010.
    [67] K. K. Mishra, K. Rajeshwar,” A voltammetric study of the electrodeposition chemistry in the Cu + In + Se system,” J. Electroanal. Chem., vol. 271, pp. 279-294, 1989.
    [68] J. Liu, F. Liu, Y. Lai , Z. Zhang, J. Li, Y. Liu, “Effects of sodium sulfamate on electrodeposition of Cu(In,Ga)Se2 thin film,” J. Electroanal. Chem., vol. 651, pp. 191-196, 2011.
    [69] Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li, Y. Liu,” Cyclic voltammetry study of electrodeposition of Cu(In,Ga)Se2 thin film” Electrochim. Acta., vol. 54, pp. 3004-3010, 2009.
    [70] B. Scharifker, G. Hills, “Theoretical and experimental studies of multiple nucleation,” Electrochim. Acta, vol. 28, pp. 879-889, 1983.
    [71] D. Grujicic, B. Pesic, “Electrodeposition of copper: the nucleation mechanisms’’,Electrochimica Acta, vol. 47, pp. 2901-2912, 2002.
    [72] M. P. Pardave, M. T. Ramirez, I. Gonzales, A. Serruya, B. R. Scharifker,” Silver Electrocrystalization on Vitreous Carbon from Ammonium Hydroxide Solutions,” J. Electrochem. Soc., vol. 143, pp.1551-1558, 1996.
    [73] D. Grujicic, B. Pesic,” Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon,” Electrochim. Acta, vol. 50, pp. 4426-4443, 2005.
    [74] A. N. Molin, A. I. Dikusar, G. A. Kiosse, P. A. Petrenko, A. I. Sokolovsky, Y. G. Saltanovsky, “Electrodeposition of CuInSe2 thin films from aqueous citric solutions I. Influence of potential and mass transfer rate on composition and structure of films ,” Thin Solid Films, vol. 237, pp. 66-71, 1994.
    [75] J. Kois, S. Bereznev, E. Mellikov, A. Ö pik,” Electrodeposition of CuInSe2 thin films onto Mo-glass substrates,” Thin Solid Films, vol. 511, pp. 420-424, 2006.
    [76] V. Izquierdo-Roca, E. Saucedo, J. S. Jaime-Ferrer, X. Fontane´, A. Pe´rez-Rodrı´guez, V. Bermu´dez, and J. R. Morante, “Real-Time Raman Scattering Analysis of the Electrochemical Growth of CuInSe2 Precursors for CuIn(S,Se)2 Solar Cells,” J. Electrochem. Soc., vol. 158, pp. H521–H524, 2011.
    [77] E. Saucedo, V. Izquierdo-Roca, C. M. Ruiz, L. Parissi, C. Broussillou, P. P. Grand, J. S. Jaime-Ferrer, A. Pérez-Rodríguez, J. R. Morante, V. Bermúdez, “Key role of Cu–Se binary phases in electrodeposited CuInSe2 precursors on final distribution of Cu–S phases in CuIn(S,Se)2 absorbers ,” Thin Solid Films, vol. 517, pp. 2268-2271, 2009.
    [78] G.H. Chandra, C. Udayakumar, N. Padhy, S. Uthanna, “Growth of highly (1 1 1) oriented CuIn0.75Al0.25Se2 thin films,” Mater. Sci. Semicond. Process., vol. 13, pp. 288-294, 2010.
    [79] C. L. Exstrom, J. Olejníček, S. A. Darveau, A. Mirasano, D. S. Paprocki, M. L Schliefert, M. A. Ingersoll, L. E. Slaymaker, R. J. Soukup Natale, J. Ianno, C. Kamler, “Solvothermal Preparation, Processing, and Characterization of Nanocrystalline CuIn1-xAlxSe2 Materials ,” MRS Proceedings, vol.1165, 2009.
    [80] J. Olejníček, C. A. Kamler, S. A. Darveau, C. L. Exstrom, L. E. Slaymaker, A. R. Vandeventer, N. J. Ianno, R. J. Soukup, “Formation of CuIn1 − xAlxSe2 thin films studied by Raman scattering,” Thin Solid Films, vol. 519, pp. 5329–5334, 2011.
    [81] V. Izquierdo-Roca, A. Perez-Rodriguez, A. Romano-Rodriguez, J. R. Morante, J. Alvarez-Garcia, L. Calvo-Barrio, V. Bermudez, P. P. Grand, O. Ramdani, L. Parissi, O. Kerrec, “Raman microprobe characterization of electrodeposited S-rich CuIn(S,Se)2 for photovoltaic applications: Microstructural analysis” , J. Appl. Phys., vol. 101, pp. 103517-103517-8, 2007.
    [82] C. Rincon, F. J. Ramirez, “Lattice vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry,” J. Appl. Phys., vol. 72, pp. 4321–4324, 1992.
    [83] V. Izquierdo-Roca, R. Caballero, X. Fontané, C. A. Kaufmann, J. Álvarez-García, L. Calvo-Barrio, E. Saucedo, A. Pérez-Rodríguez, J. R. Morante, H. W. Schock, “Raman scattering analysis of Cu-poor Cu(In,Ga)Se2 cells fabricated on polyimide substrates: Effect of Na content on microstructure and phase structure ,” Thin Solid Films, vol. 519, pp. 7300-7303, 2011.
    [84] Y. Lai, J. Liu, J. Yang, B. Wang, F. Liu, Z. Zhang, J. Li, Y. Liu, “Incorporation Mechanism of Indium and Gallium during Electrodeposition of Cu(In,Ga)Se2 Thin Film” , J. Electrochem. Soc., vol. 158, pp. D704–D709, 2011.
    [85] W. Witte, R. Kniese, M. Powall, “Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents ,” Thin Solid Films, vol. 517, pp. 867-869, 2008.
    [86] X. Fontané, V. Izquierdo-Roca, L. Calvo-Barrio, A. Pérez-Rodríguez, J. R. Morante, D. Guettler, A. Eicke, A. N. Tiwari, “In-depth resolved Raman scattering analysis of secondary phases in Cu-poor CuInSe2 based thin films,” Appl. Phys. Lett., vol. 95, pp. 121907-121907-3, 2009.
    [87] B. Kavitha, M. Dhanam, “In and Al composition in nano-Cu(In,Al)Se2 thin films from XRD and transmittance spectra,” Mater. Sci. Eng. B, vol. 140, pp. 59-63, 2007.
    [88] S. Yamada, K. Tanaka, T. Minemoto, H. Takakura, “Effect of Al addition on the characteristics of Cu(In,Al)Se2 solar cells” , J. Cryst. Growth, vol. 311, pp. 731-734, 2009.
    [89] T. P. Hsieh, C. C. Chuang, C. S. Wu, J. C. Chang, J. W. Guo, W. C. Chen, “Effects of residual copper selenide on CuInGaSe2 solar cells,” Solid-State Electron., vol. 56, pp.175-178, 2011
    [90] Y. B. K. Reddy, V. S. Raja, B Sreedhar, “Growth and characterization of CuIn1−xAlxSe2 thin films deposited by co-evaporation,” J. Phys. D: Appl. Phys., vol. 39, pp. 5124-5132, 2006.
    [91] E. Halgand, J.C. Berne`de, S. Marsillac, J. Kessler, “Physico-chemical characterisation of Cu(In,Al)Se2 thin film for solar cells obtained by a selenisation process ,” Thin Solid Films, vol. 480, pp. 443-446, 2005.
    [92] P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire, W. N. Shafarmana, “CuIn1−xAlxSe2 thin films and solar cells,” J. Appl. Phys., vol. 91, pp. 10153-10156, 2002.
    [93] R. Friedfeld1, R.P. Raffaelle, J.G. Mantovani, “Electrodeposition of CuInxGa1-xSe2 thin films,” Sol. Energy Mater. Sol. Cells., vol. 58, pp. 375-385, 1999.
    [94] T. Yamaguchi, Y. Yamamoto, T. Tanaka, N. Tanashi, A. Yoshida, “Influence of annealing temperature on the properties of Cu(In,Ga)Se2 thin films by thermal crystallization in Se vapor,” Sol. Energy Mater. Sol. Cells., vol. 50, pp. 1-6, 1998.
    [95] M.E. Calixto, K.D. Dobson, B.E. McCandless, R.W. Birkmire, “Controlling Growth Chemistry and Morphology of Single-Bath Electrodeposited Cu(In,Ga)Se2 Thin Films for Photovoltaic Application,” J. Electrochem. Soc., vol. 153, pp. G521-G528, 2006.
    [96] T.P. Hsieh, C.C. Chuang, C.S. Wu, J.C. Chang, J.W. Guo, W.C. Chen, ”Effects of residual copper selenide on CuInGaSe2 solar cells,” Solid-State Electron., vol. 56, pp. 175-178, 2011.
    [97] B. Dimmler, H. Dittrich, H.W. Schock, “Structure and morphology of evaporated bilayer and selenized CuInSe2 films” In: Proceedings of the 20th IEEE Photovoltaic specialists conference. New York, pp. 1426-1430, 1988.
    [98] T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, M. Konagai, “Fabrication of Cu(In,Ga)Se2 thin films by a combination of mechanochemical and screen-printing/sintering processes,” phys. stat. sol. (a)., vol. 203, pp. 2593-2597, 2006.
    [99] O. Ramdani, J.F. Guillemoles, D. Lincot, P.P. Grand, E. Chassaing, O. Kerrec, E. Rzepka, “One-step electrodeposited CuInSe2 thin films studied by Raman spectroscopy,” Thin Solid Films, vol. 515, pp. 5909-5912, 2007.
    [100] V. Izquierdo-Roca, J. A´ lvarez-García, L. Calvo-BarrioA. P´erez-Rodríguez, J. R. Morante, V. Bermudez, O. Ramdani, P.P. Grandd, O. Kerrec, “Raman scattering characterisation of electrochemical growth of CuInSe2 nanocrystalline thin films for photovoltaic applications: Surface and in-depth analysis,” Surf. Interface Anal., vol. 40, pp. 798-801, 2008.
    [101] B. Dimmler, H. Dittrich, H.W. Schock, “Structure and morphology of evaporated bilayer and selenized CuInSe2 films” In: Proceedings of the 20th IEEE Photovoltaic specialists conference. New York, pp. 1426-1430, 1988.
    [102] J. F. Guillemoles, “Stability of Cu(In,Ga)Se2 solar cells: a thermodynamic approach ,” Thin Solid Films, vol. 361-62, pp.338-345, 2000.
    [103] D. Cahen,” Free energies and enthalpies of possible gas phase and surface reactions for preparation of CuInSe2 ,” J. Phys. Chem. Solids, vol. 53, pp. 991-1005, 1992.
    [104] W. K. Kim, S. Kim, E. A. Payzant, S. A. Speakman, S. Yoon, R. M. Kaczynski, R. D. Acher, T. J. Anderson, O. D. Crisalle, S. S. Li and V. Craciun,“ Reaction kinetics of α-CuInSe2 formation an In2Se3/CuSe bilayer precursor film,” J. Phys. Chem. Solids, vol. 66, pp. 1915-1919, 2005.
    [105] W. K. Kim, E. A. Payzant ,S. Kim, S. A. Speakman, O. D. Crisalle and T.J. Anderson, “Reaction kinetics of CuGaSe2 formation from a GaSe/CuSe bilayer precursor film ,” J. Cryst. Growth, vol. 310, pp. 2987-2994, 2008.
    [106] S. Ishizuka, L. M. Mansfield, C. Dehart, M. Scoot, B. To, M. R. Young, B. Egass, R. Noufi, “Rapid Fabrication of Cu(In,Ga)Se2 Thin Films by the Twe-Step Selenization Process,” IEEE Journal of Photovoltaics, vol. 3, pp. 2156-3381, 2013.
    [107] X. L. Zhu, Y. M. Wang, Z. Zhou, A. M. Li, L. Zhang, F. Q. Huang, “13.6%-efficient Cu(In,Ga)Se2 solar cell with absorber fabricated by RF sputtering of (In,Ga)2Se3 and CuSe targets,” Sol. Energy Mater. Sol. Cells, vol. 113, pp. 140-143, 2013.
    [108] F. Smaili, “Growth of single-phase Cu(In, Al)S2 thin films by thermal evaporation,” Eur. Phys. J. Appl. Phys., vol. 54, pp. 10304-10308, 2011.

    無法下載圖示 校內:2025-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE