| 研究生: |
吳文正 Wu, Wen-Cheng |
|---|---|
| 論文名稱: |
晶片電阻電容硫化之研究 A Sulfidation of Chip Resistor and Capacitor |
| 指導教授: |
申永輝
Shen, Yun-Hwei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 電阻 、電容 、硫化反應 、硫花 |
| 外文關鍵詞: | resistor, capacitor, sulfidation, sulfur flower |
| 相關次數: | 點閱:196 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在電阻製造過程中,先將端電極的正導及被導印刷銀膏於氧化鋁陶瓷基板上,經燒結後再將電阻膏印刷於陶瓷版中間,再將保護層覆蓋於電阻膏上方。正、被導的成份大部份為銀,而覆蓋在其上的保護層及覆蓋不良、電鍍層不佳,再遭遇大氣含硫環境,很容易造成腐蝕而產生電阻阻值飄移,最後導致電阻失效。
在電容X7R及Y5V之製造過程中,其端電極的最內層為銅膏所製成,即卑金屬電極(BME,Base Metal Electrode),另電容NPO之製造過程中,其端電極的最內層為銀膏所製成,為貴金屬電極(NME,Noble Metal Electrode),而再經電鍍鎳層保護銅層及銀層,當鎳層電鍍不良時,再遭遇大氣含硫環境時,很容易造成電容腐蝕,進而造成電性、介電損失及絶緣阻抗等性質飄移,導致電容失效。
本研究證實參考美國試驗材料協會發佈的標準方法ASTM B809-95的方法所建立的高溫高濕硫化環境系統條件,並加高溫度於60℃及105℃之高腐蝕環境中,可成功的模擬出電阻及電容產品硫化的現象,透過SEM、EDS、XRD及TEM的驗證,得到銀及銅與硫反應,其產生為acanthite的Ag2S及hexagonal的CuS,其反應的機制為硫氣延著鎳層與陶瓷體的交界處,與端電極內層的銀膏或銅膏反應產生硫化銀及硫化銅。
In the conventional resistor manufacturing processes, the alumina ceramic substrate was printed firstly by silver paste of the front and back conductor. After that, the printed substrate was proceed with sintering, then printed again by resistance paste on the middle surface of the substrate, and lapped by protective layer in turn. The main composition in the front and back conductor is silver mostly. Sulphur-containing atmosphere, poor coverage and plating in protective layer were considered to be responsible for the phenomenon of resistance drift and failure.
Similar behavior is also observed in the industrialization of multilayer ceramic capacitors (MLCCs). MLCCs terminated with copper (Cu) base metal electrode (BME) are commonly used in the temperature specification of X7R/Y5V, while MLCCs terminated with silver (Ag) noble metal electrode (NME) are applied in NPO. The copper (Cu) and silver (Ag) layer are protected by plating nickel (Ni) layer on the surface. The most critical issue for MLCCs is electrical drift, such as deviation in capacitance, dielectric loss, and insulation resistance, and even resulted in the failure of capacitor, which is ascribed to poor plating in nickel layer and sulphur-containing atmosphere.
This study confirms that resistors and capacitors simulated successfully under the high-temperature and high-humidity vulcanization environment. The testing condition followed ASTM B809-95 standard method published by the American Society for Testing Materials, and executed under 60oC and 105oC with corrosive environment. By applying SEM, EDS, XRD and TEM, acanthite Ag2S and hexagonal CuS were both observed in resistances and capacitors with vulcanization. It was considered that sulfur gas extended to the junction of the nickel layer and the ceramic body, and then reacted with the silver layer and copper layer insides into silver sulfide and copper sulfide respectively.
【1】陳君合,工業材料雜誌,109,p92(1996)。
【2】藍偉庭,工業材料雜誌,209,p69(2004)。
【3】Product Management Team Global Marketing, R-chip Introduction, Yageo(2005).
【4】蔡政賢,含硫氣體化合物於高週波電漿中之反應機制,成功大學博士論文(2005) 。
【5】O. Badr and S. D. Probert, “Atmospheric Sulphur Trends, Souces, Sinks and Environmental Impact,” Applied Energy, vol 47(1994).
【6】Michael Read, Maurice N. Collins, Eric Dalton, Jeff Punch and David A. Tanner, Microelectronics Reliability, Vol. 52, p1420(2012).
【7】Shunong Zhang, Rui Kang, and Michael G. Pecht, Fellow, “Corrosion of ImAg-Finished PCBs Subjected to Elemental Sulfur Environments,” IEEE Transactions on device and materials reliability, Vol. 11, NO. 3, Sep(2011).
【8】C.Xu. D. Flemming, and K. Demerkin, “Corrosion Resistance of PCB Surface Finishes,” Los Angeles, CA: Apex, Feb. 20-22, (2007).
【9】W. Q. Wang, A. Choubey, M. AZarian, and M. G. Pecht, “An assessment of immersion Siver surface finish for lead-free electronics,” J. Electron. Mater., vol. 38, No. 6, pp. 815-827, Jun. (2009).
【10】P. Mazurkiewicz, “Accelerated Corrosion of Printed Circuit Boards Due to High Levels of Reduce Sulfur Gasses in Industrial Environments,” in Proc. 32nd Int. Symp. Test. Failure Anal., Austin, TX, Nov. 12-16(2006).
【11】D. Cullen, “Surface Tarnish and Creeping Corrosion on Pb-free Circuit Board Surface Finishes,” in Proc. IPC Works, Las Vegas, NV(2005).
【12】R. Vcale, “Reliability of PCB Alternate Surface Finishes in a harsh Industrial Environment,” in Proc. SMTA Int., Orlando, FL, pp. 643-654 Oct. (2007).
【13】R. Schueller, “Creep Corrosion on Lead-free Printed Circuit Boards in High Sulfur environments,” in Proc. SMTA Int., Orlando, FL, pp. 643-654, Oct(2007).
【14】Y. L. Zhou and M. G. Pecht, “Assessment of immersion silver finished circuit board assemblies using clay tests,” in Proc. ICRMS, Chengdu China, Jul. 20-24(2009).
【15】S.N. Zhang, M. Osterman, A. Shrivastava, R. Kang, and M. G. Pecht, “The influence of H2S Environments on Immersion Silver Finished PCBs by Mixed Flow Gas Testing,” IEEE Trans. Device Mater. Rel., Vol. 10, No. 1, pp. 71-81, Mar.(2010).
【16】T. E. Graedel, J. P. Franey, G. J. Gualtieri, G. W. Kammlott and D. L. Malm, “On the mechanism of silver and copper sulfidation by atmospheric H S and OCS ,” Corros. Sci., vol. 25, pp. 1163–1180(1985).
【17】J. A. Lorenzen, Proc. Inst. Environ. Sci. 110(1071).【18】P. Backlund, B. Fjellstrom, S. Hammarback and B. Maijgeren, Ark. Kemi 26, 267(1966).
【19】S. P. Shama, J. electrochem. Soc. 127, 21(1980).
【20】S. H. Wang and S. H. Yang, “Growth behaviour of straight crystalline copper sulphide nanowires,” Adv. Mater. Opt. Electron, vol. 10, no.1 pp. 39–45, Jan. /Feb.( 2000).
【21】T. E. Gradel, J. P. Franey and G. W. Kammlott, Science 212, 663(1981).
【22】L. Soto, J. P. Franey, T. E. Graedel and G. W. Kammlott, Corros. Sci 23, 241(1983).
【23】J. P. Franey, G. W. Kammoltt and T. E. Graedel, Corros. Sci. 25, 133(1985).
【24】Michael Reid, Jeff Punch, Claire Ryan, John Franey, Gustav E. Derkits, Jr., William D. Reents, Jr., and Luis F. Garfia, “The Corrosion of Electronic Resistors,” IEEE Transactions on components and technologies, VOL. 30, NO. 4, December(2007).
【25】S. C. Axtell, “Failure of thick chip resistor in sulphur containing environments”, Micro electron. Failure Anal. Desk Ref. Suppl., pp. 161–173, (2002).
【26】L. F. Garfias-Mesias, J. P. Franey, R. P. Frankenthal, and W. D. Reents, “Proactive reliability assessment of electronic equipment for long-term deployment in corrosive environments,” in Proc. Gordon Res. Conf. Corros., Jul. 26,(2004).
【27】L. F. Garfias-Mesias, J. P. Franey, R. P. Frankenthal, R. Coyle, and W. D. Reents, “Life prediction and risk mitigation for 20 year telecom electronic equipment in harsh environments,” in CORROSION 2005, Research In Progress. Houston, TX: NACE, Apr. 4–6(2005).
【28】J. P. Franey, T. E. Graedel, and G. W. Kammlott, “Corrosion of silver by atmospheric sulfur gases,” J. Electrochem. Soc., vol. 129, pp. C90–C90, (1982).
【29】J. P. Franey, G. W. Kammlott, and T. E. Graedel, “The corrosion of silver by atmospheric sulfurous gases,” Corros. Sci., vol. 25, pp. 133–143,(1985).
【30】T. E. Graedel, J. P. Franey, G. J. Gualtieri, G. W. Kammlott, and D. L. Malm, “On the mechanism of silver and copper sulfidation by atmospheric H S and OCS,” Corros. Sci.,vol. 25, pp. 1163–1180(1985).
【31】C. Leygraf and T. E. Graedel, Atmospheric Corrosion. New York: Wiley(2000).
【32】L. Volpe and P. J. Peterson, “The atmospheric Sulfidation of Silver in a Tubular,” Corrosion Science, No. 10, 29, p.1179, (1989).
【33】T. E. Graedel, “Corrosion mechanisms for silver exposed to the atmosphere,” J. Electrochem. Soc.,vol. 139, pp. 1963–1970(1992).
【34】R.W. Chiarenzeli, “Proc. 3rd Intl. Res. Symp. Elec. Contact Phenom.,” Univ. of Maine, Orono, p.83 (1966).
【35】H.E. Bennettt, R. L. Peck, D.K. Burge, and J. M. Ben-nett, J. Appl. Phys., 40, 3351(1969).
【36】J. R. Devaney, “Electronic Packaging and Corrosion in Microeletronics,” M. E. Nicholson, Editor, ASM, Materials Park, OH, p.287(1987).
【37】J. D. Sinclair, “Tarnishing of Silver by Organic Sulfur Vapors: Rates and Film Characteristics,” Journal of the Electrochemical Society, January 129(1):33-40(1982).
【38】R.W. Chiarenzelli, “Proc. 3rd Intl. Res. Symp. Elec. Contact Phenom.,”, Univ. of Maine, Orono, p. 83(1966).
【39】D. Zivkovic., “Thermal study and mechanism of Ag2S oxidation in air,” J Therm Anal Calorim1111:1173-1176(2013).
【40】D.J. Chakrabarti and D. E. Laughlin, “The Cu-S (Copper-Sulfur) System,” Bulletin of Alloy Phase Diagrams, Vol. 4, No.3(1083).
【41】Frueh, A.J., “The Crystal Structure of Stromeyerite AgCuS, a Possible Defect Structure,” Z. Kristallogr., Vol. 106, pp. 299-307(1955).
【42】Krestovnikov, A. N., Mendelebur, A. Yu., and Glazov, V.M., “Phase Equilibria in the System Cu2S-Ag2S,” IZv. Akad. Nauk SSSR, Neorg. Mater., Vol. 4, No. 7, pp. 1280-1281(1968).
【43】Pierre, P. and Clande, Y.,”Relations Activite Composition Dans Les Solutions Solides Ag2S-Cu2S,” Rev. Chim. Miner., Vol. 8, No. 1, pp. 87-97(1971).
【44】Valverde, N., “Das Zustands Diagramm Des System Cu-Ag-S Bie 300°,” Z. Phys. Chem., Vol. 62, Nos. 1-4, pp. 218-220(1968).
【45】Skinner, B. J., “The System Cu-Ag-S,” Econ. Geol., Vol. 61, No. 1, pp. 1-26(1966).
【46】Graf, R.B., “Phase Transformations in the System Cu2S-Ag2S,” J. Electrochem. Soc., Vol. 115, No. 4, pp 433-439(1968).
【47】Yu. G. Asadov, Yu. I. Alyev, and K. M. Jafarov, “X-ray Diffraction Study of Compounds in the Ag2S-Cu2S System”, Inorganic Materials Vol. 44, No. 5, pp. 460-466(2008).
【48】Clarke, M., The Electrochemical Society, p22(1975).
【49】Krumbein, S. J., Transactions of the Connectors and Interconnection Technology Symposium, p.22(1987).
【50】何快容、陳志榮、黃明清、周學良,電子與材料,8(2000)。
【51】羅聖全,電子顯微鏡介紹,SEM(2004)。
【52】陳世昌,工業材料雜誌,106(1995)。
【53】林智仁,工業材料雜誌,181(2002)。
【54】村中祥悟,京都大學總合技術研究會報集,p.30,2(2009)。
【55】I-Kuan Cheng, YAGEO Engineering School Training Course, YAGEO(2010).
【56】羅聖全、江正誠、林智仁、陳淑貞、林麗娟、洪健龍,工業材料雜誌,p206(1994)。
【57】林明為、羅聖全、朱仁佑、蔡枝松、林麗娟、葉吉田,工業材料雜誌,p252(2007)。
【58】賴明為、羅聖全、林麗娟,工業材料雜誌,p277(2010)。
【59】早乙女秀丸、勝田禎治、吉田壽治,FIB(集束イオンビーム)用試料保護膜の製膜可能なカーボンコータの開発,茨城県工業技術センター研究報告,38号(2009)。
【60】M.D. Uchic, M. De Graef, R. Wheeler and D. M. Dimiduk, Ultramicroscopy, 109, p1229(2009).
【61】H. Ostadi, M. Malboubi, P. D. Prewett and K. Jiang, Microelectron. Eng., 86, p.868, (2009).
【62】Akira Saito, Nobuyuki Wada, Hiroshi Tamura and Yukio Sakabe, CARTS Europe, p189(2005).
【63】R. Waser, T. Baiatu, and K. H. Hardfl and J. Am., Ceram. Soc., No. 6,79, p.1645(1990).
【64】林智仁,工業材料雜誌,p181(2002)。
【65】羅聖全,電子顯微鏡介紹-TEM,(2004)。
【66】鮑忠興、劉思謙,近代穿透式電子顯微鏡實務,(2008)。
【67】J udy S. Kim, Science, No. 5895, 321, p.1472(2008).
【68】N.D. Browning, Proceedings of 9th Asia-Pacific Microscopy, p.57( 2008).
【69】Reza Abbaschian, Lara. Abbaschian and Robert E. Reed-Hill, Physical Metallurgy Principles, 4th Edition9(2008).