簡易檢索 / 詳目顯示

研究生: 黃義純
Huang, Yi-Chun
論文名稱: 探討一新穎藥物BPR1K-X在人類胰臟癌細胞之抑癌作用與機制
Investigations of the effectiveness of a novel multiple kinase inhibitor, BPR1K-X, in targeting human pancreatic cancer cells
指導教授: 張雋曦
Cheung, Chun Hei Antonio
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 83
中文關鍵詞: Aurora kinaseTrkAmTOR
外文關鍵詞: Aurora kinase, TrkA, mTOR
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胰臟癌是現有人類罹患的惡性腫瘤中,最具侵略性、致死性和預後不佳的一種癌症。胰臟癌的病患平均五年存活率約只有百分之六,雖然標準治療藥物gemcitabine對部分的胰臟癌病患有療效,但在晚期胰臟癌病患中平均只能維持5.6個月的存活時間,因此發展更多新型治療策略來控制此棘手的癌症是十分重要的。隨著癌症研究的精進,已有許多報導顯示過度的Aurora kinase表現在胰臟癌的發展過程中扮演關鍵的角色;而異常的mTOR kinase訊息活化也與胰臟癌的癌化過程和抗藥性息息相關;另外,也有研究指出過度活化TrkA kinase訊息傳導路徑與胰臟癌的高度轉移性有一定關聯。因此本研究的目的,是去探討一新穎藥物BPR1K-X對於胰臟癌細胞是否有抑癌作用,並了解其分子機制。首先在試管內激脢活性分析中,BPR1K-X可有效抑制Aurora A kinase、Aurora B kinase與TrkA kinase的活性。而在細胞實驗中,BPR1K-X對四株不同的胰臟癌細胞皆有療效。本研究進一步利用西方墨點法,也證實BPR1K-X可藉由抑制Aurora A kinase、Aurora B kinase、TrkA與mTOR的訊息傳導路徑,進而抑制癌細胞的生長。流式細胞儀的分析則指出BPR1K-X會造成細胞周期停留G2/M期,使癌細胞無法正常分裂進而產生多倍體。另外在西方墨點法、免疫螢光染色以及細胞自噬作用抑制的實驗中,都顯示BPR1K-X會增加細胞凋亡與細胞自噬作用造成癌細胞的死亡。總結以上結果,BPR1K-X為有潛力的多分子抑制劑,未來有機會應用為治療胰臟癌的新抗癌藥物。

    Pancreatic cancer is widely known as the most aggressive solid malignancies with poor prognosis. The overall 5-year survival is 6%, and the standard treatment with gemcitabine only yields a median survival of 5.6 months in advanced disease. Therefore, developing novel therapeutic approaches is desperately needed. Previous studies have shown that overexpression of oncogenic Aurora kinases play a critical role in pancreatic carcinogenesis. Aberrant mTOR signaling in cancer cells is also associated with the drug resistance and tumorigenic potential. Besides, recent studies reveal that TrkA plays an important role in pancreatic cancer development, making these signaling pathways as important anticancer targets. In this study, we aim to elucidate the anticancer activity of a novel multiple kinase inhibitor, BPR1K-X, in human pancreatic cancer cell lines. In vitro kinase inhibition assay indicated that BPR1K-X inhibited multiple kinase activity such as Aurora A and B, and TrkA at low nano-molar concentrations. Results of the MTT cell viability assay, BrdU cell proliferation assay and LDH cytotoxicity assay showed that BPR1K-X was effective in targeting the human AsPC-1, MIA PaCa-2, BxPC-3, and PANC-1 pancreatic cancer cells in vitro. At the molecular level, Western blot analysis revealed that BPR1K-X suppressed p-Aurora A and B, p-mTOR, and p-TrkA expression in pancreatic cancer cells. In addition, Western blot analysis and flow cytometric analysis revealed that BPR1K-X decreased the expression of cyclin B1 and induced endo-reduplication by the formation of polyploidy, respectively. It also modulated autophagy and induced apoptosis in the treated pancreatic cancer cells. Taken together, our study suggests that BPR1K-X is a potent multiple kinase inhibitor that is able to target human pancreatic cancer cells.

    中文摘要 I ABSTRACT III 誌謝 VI Abbreviation VII List of Tables and Figures IX List of Supplementary XI INTRODUCTION 1 1.1. Pancreatic cancer 2 1.1.1. The epidemiology of pancreatic cancer 2 1.1.2. Treatments of pancreatic cancer 3 1.2. Disadvantage of current clinical therapy of pancreatic cancer 4 1.2.1. Drug resistance 4 1.3. Aurora kinases 5 1.3.1. Function of Aurora kinases 5 1.3.2. Aurora kinases and pancreatic cancer 6 1.3.3. Current Aurora kinase inhibitors 7 1.4. The mammalian target of rapamycin (mTOR) signaling pathway 9 1.4.1. Function of mTOR 9 1.4.2. mTOR and pancreatic cancer 10 1.4.3. Current mTOR inhibitors 11 1.5. The tropomyosin-related kinase A (TrkA) signaling pathway 12 1.5.1. Function of TrkA 12 1.5.2. TrkA and pancreatic cancer 13 1.5.3. Current TrkA inhibitors 14 1.6. Aims of this study 15 MATERIALS AND METHODS 16 2.1. Materials 17 2.2. Recipes 19 2.3. BPR1K-X 21 2.4. Methods 21 2.4.1. Cells and culture 21 2.4.2. MTT assay 22 2.4.3. Bromodeoxyuridine (BrdU) cell proliferation assay 22 2.4.4. Lactate dehydrogenase (LDH) cytotoxicity assay 23 2.4.5. Western blot analysis 23 2.4.6. Flow cytometry 24 2.4.7. Annexin V apoptosis assay 25 2.4.8. Monodansylcadaverine (MDC) staining 25 2.4.9. LysoTracker® Red staining 26 2.4.10. Statistical analysis 26 RESULTS 27 3.1. BPR1K-X is effective in targeting the human pancreatic cancer cells in vitro. 28 3.2. BPR1K-X inhibits phosphorylation of Aurora A kinase, Aurora B kinase, TrkA, and mTOR in pancreatic cancer cells. 29 3.3. BPR1K-X induces cell cycle arrest and endo-reduplication in pancreatic cancer cells. 30 3.4. BPR1K-X induces apoptosis in pancreatic cancer cells. 31 3.5. BPR1K-X modulates autophagy in pancreatic cancer cells. 32 DISCUSSION & CONCLUSIONS 34 4.1. Discussion 35 4.2. Conclusions 38 REFERENCES 39 TABLES 51 FIGURES 56 SUPPLEMENTARY 79

    Baehrecke, E. H. (2005). Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol, 6(6), 505-510.
    Ballou, L. M., & Lin, R. Z. (2008). Rapamycin and mTOR kinase inhibitors. J Chem Biol, 1(1-4), 27-36.
    Biederbick, A., Kern, H. F., & Elsasser, H. P. (1995). Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol, 66(1), 3-14.
    Bondar, V. M., Sweeney-Gotsch, B., Andreeff, M., Mills, G. B., & McConkey, D. J. (2002). Inhibition of the phosphatidylinositol 3'-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther, 1(12), 989-997.
    Brodeur, G. M. (2003). Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer, 3(3), 203-216.
    Burris, H. A., 3rd, Moore, M. J., Andersen, J., Green, M. R., Rothenberg, M. L., Modiano, M. R., Von Hoff, D. D. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol, 15(6), 2403-2413.
    Carvajal, R. D., Tse, A., & Schwartz, G. K. (2006). Aurora kinases: new targets for cancer therapy. Clin Cancer Res, 12(23), 6869-6875.
    Cazales, M., Schmitt, E., Montembault, E., Dozier, C., Prigent, C., & Ducommun, B. (2005). CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage. Cell Cycle, 4(9), 1233-1238.
    Chawla, S. P., Staddon, A. P., Baker, L. H., Schuetze, S. M., Tolcher, A. W., D'Amato, G. Z., Demetri, G. D. (2012). Phase II study of the mammalian target of rapamycin inhibitor ridaforolimus in patients with advanced bone and soft tissue sarcomas. J Clin Oncol, 30(1), 78-84.
    Cheung, C. H., Coumar, M. S., Chang, J. Y., & Hsieh, H. P. (2011). Aurora kinase inhibitor patents and agents in clinical testing: an update (2009-10). Expert Opin Ther Pat, 21(6), 857-884.
    Cheung, C. H., Coumar, M. S., Hsieh, H. P., & Chang, J. Y. (2009). Aurora kinase inhibitors in preclinical and clinical testing. Expert Opin Investig Drugs, 18(4), 379-398.
    Cheung, C. H., Lin, W. H., Hsu, J. T., Hour, T. C., Yeh, T. K., Ko, S., Chang, J. Y. (2011). BPR1K653, a novel Aurora kinase inhibitor, exhibits potent anti-proliferative activity in MDR1 (P-gp170)-mediated multidrug-resistant cancer cells. PLoS One, 6(8), e23485.
    el-Kamar, F. G., Grossbard, M. L., & Kozuch, P. S. (2003). Metastatic pancreatic cancer: emerging strategies in chemotherapy and palliative care. Oncologist, 8(1), 18-34.
    Faivre, S., Kroemer, G., & Raymond, E. (2006). Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov, 5(8), 671-688.
    Fu, J., Bian, M., Jiang, Q., & Zhang, C. (2007). Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res, 5(1), 1-10.
    Giet, R., Petretti, C., & Prigent, C. (2005). Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol, 15(5), 241-250.
    Giles, F. J., Swords, R. T., Nagler, A., Hochhaus, A., Ottmann, O. G., Rizzieri, D. A., Cortes, J. E. (2013). MK-0457, an Aurora kinase and BCR-ABL inhibitor, is active in patients with BCR-ABL T315I leukemia. Leukemia, 27(1), 113-117.
    Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. J Pathol, 221(1), 3-12.
    Guba, M., von Breitenbuch, P., Steinbauer, M., Koehl, G., Flegel, S., Hornung, M., Geissler, E. K. (2002). Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med, 8(2), 128-135.
    Guertin, D. A., & Sabatini, D. M. (2007). Defining the role of mTOR in cancer. Cancer Cell, 12(1), 9-22.
    Harrington, E. A., Bebbington, D., Moore, J., Rasmussen, R. K., Ajose-Adeogun, A. O., Nakayama, T., Miller, K. M. (2004). VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med, 10(3), 262-267.
    Hata, T., Furukawa, T., Sunamura, M., Egawa, S., Motoi, F., Ohmura, N., .Horii, A. (2005). RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Cancer Res, 65(7), 2899-2905.
    Hauf, S., Cole, R. W., LaTerra, S., Zimmer, C., Schnapp, G., Walter, R., Peters, J. M. (2003). The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol, 161(2), 281-294.
    Heinemann, V. (2002). Gemcitabine in the treatment of advanced pancreatic cancer: a comparative analysis of randomized trials. Semin Oncol, 29(6 Suppl 20), 9-16.
    Heinemann, V., Quietzsch, D., Gieseler, F., Gonnermann, M., Schonekas, H., Rost, A., Wilkowski, R. (2006). Randomized phase III trial of gemcitabine plus cisplatin compared with gemcitabine alone in advanced pancreatic cancer. J Clin Oncol, 24(24), 3946-3952.
    Hidalgo, M. (2010). Pancreatic cancer. N Engl J Med, 362(17), 1605-1617.
    Hirose, K., Kawashima, T., Iwamoto, I., Nosaka, T., & Kitamura, T. (2001). MgcRacGAP is involved in cytokinesis through associating with mitotic spindle and midbody. J Biol Chem, 276(8), 5821-5828.
    Hoar, K., Chakravarty, A., Rabino, C., Wysong, D., Bowman, D., Roy, N., & Ecsedy, J. A. (2007). MLN8054, a small-molecule inhibitor of Aurora A, causes spindle pole and chromosome congression defects leading to aneuploidy. Mol Cell Biol, 27(12), 4513-4525.
    Ikenoue, T., Inoki, K., Yang, Q., Zhou, X., & Guan, K. L. (2008). Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J, 27(14), 1919-1931.
    Kagawa, S., Takano, S., Yoshitomi, H., Kimura, F., Satoh, M., Shimizu, H., Miyazaki, M. (2012). Akt/mTOR signaling pathway is crucial for gemcitabine resistance induced by Annexin II in pancreatic cancer cells. J Surg Res, 178(2), 758-767.
    Klionsky, D. J., Cuervo, A. M., & Seglen, P. O. (2007). Methods for monitoring autophagy from yeast to human. Autophagy, 3(3), 181-206.
    Konig, J., Hartel, M., Nies, A. T., Martignoni, M. E., Guo, J., Buchler, M. W., .Keppler, D. (2005). Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma. Int J Cancer, 115(3), 359-367.
    Kufer, T. A., Sillje, H. H., Korner, R., Gruss, O. J., Meraldi, P., & Nigg, E. A. (2002). Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol, 158(4), 617-623.
    Lagadec, C., Meignan, S., Adriaenssens, E., Foveau, B., Vanhecke, E., Romon, R., Le Bourhis, X. (2009). TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene, 28(18), 1960-1970.
    Lassus, H., Staff, S., Leminen, A., Isola, J., & Butzow, R. (2011). Aurora-A overexpression and aneuploidy predict poor outcome in serous ovarian carcinoma. Gynecol Oncol, 120(1), 11-17.
    Law, B. K. (2005). Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol, 56(1), 47-60.
    Li, D., Zhu, J., Firozi, P. F., Abbruzzese, J. L., Evans, D. B., Cleary, K., Sen, S. (2003). Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin Cancer Res, 9(3), 991-997.
    Li, X., Sakashita, G., Matsuzaki, H., Sugimoto, K., Kimura, K., Hanaoka, F., Urano, T. (2004). Direct association with inner centromere protein (INCENP) activates the novel chromosomal passenger protein, Aurora-C. J Biol Chem, 279(45), 47201-47211.
    Lin, Y., Fu, R., Grant, E., Chen, Y., Lee, J. E., Gupta, P. C., Potter, J. D. (2013). Association of body mass index and risk of death from pancreatic cancer in Asians: findings from the Asia Cohort Consortium. Eur J Cancer Prev, 22(3), 244-250.
    Liu, D., Zhang, Y., Dang, C., Ma, Q., Lee, W., & Chen, W. (2007). siRNA directed against TrkA sensitizes human pancreatic cancer cells to apoptosis induced by gemcitabine through an inactivation of PI3K/Akt-dependent pathway. Oncol Rep, 18(3), 673-677.
    Long, J., Zhang, Y., Yu, X., Yang, J., LeBrun, D. G., Chen, C., Li, M. (2011). Overcoming drug resistance in pancreatic cancer. Expert Opin Ther Targets, 15(7), 817-828.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem, 193(1), 265-275.
    Macarulla, T., Cervantes, A., Elez, E., Rodriguez-Braun, E., Baselga, J., Rosello, S., Tabernero, J. (2010). Phase I study of the selective Aurora A kinase inhibitor MLN8054 in patients with advanced solid tumors: safety, pharmacokinetics, and pharmacodynamics. Mol Cancer Ther, 9(10), 2844-2852.
    Maiuri, M. C., Zalckvar, E., Kimchi, A., & Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol, 8(9), 741-752.
    Manfredi, M. G., Ecsedy, J. A., Meetze, K. A., Balani, S. K., Burenkova, O., Chen, W., Claiborne, C. F. (2007). Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci U S A, 104(10), 4106-4111.
    Margolin, K., Longmate, J., Baratta, T., Synold, T., Christensen, S., Weber, J., Doroshow, J. H. (2005). CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer, 104(5), 1045-1048.
    Marshall, J. L., Kindler, H., Deeken, J., Bhargava, P., Vogelzang, N. J., Rizvi, N., Ratain, M. J. (2005). Phase I trial of orally administered CEP-701, a novel neurotrophin receptor-linked tyrosine kinase inhibitor. Invest New Drugs, 23(1), 31-37.
    Mendoza, M. C., Er, E. E., & Blenis, J. (2011). The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci, 36(6), 320-328.
    Meraldi, P., Honda, R., & Nigg, E. A. (2004). Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev, 14(1), 29-36.
    Michaud, D. S. (2004). Epidemiology of pancreatic cancer. Minerva Chir, 59(2), 99-111.
    Michl, P., & Gress, T. M. (2013). Current concepts and novel targets in advanced pancreatic cancer. Gut, 62(2), 317-326.
    Miknyoczki, S. J., Chang, H., Klein-Szanto, A., Dionne, C. A., & Ruggeri, B. A. (1999). The Trk tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits significant antitumor efficacy in preclinical xenograft models of human pancreatic ductal adenocarcinoma. Clin Cancer Res, 5(8), 2205-2212.
    Miknyoczki, S. J., Wan, W., Chang, H., Dobrzanski, P., Ruggeri, B. A., Dionne, C. A., & Buchkovich, K. (2002). The neurotrophin-trk receptor axes are critical for the growth and progression of human prostatic carcinoma and pancreatic ductal adenocarcinoma xenografts in nude mice. Clin Cancer Res, 8(6), 1924-1931.
    Morotti, A., Mila, S., Accornero, P., Tagliabue, E., & Ponzetto, C. (2002). K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene, 21(32), 4885-4893.
    Patapoutian, A., & Reichardt, L. F. (2001). Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol, 11(3), 272-280.
    Perez-Pinera, P., Hernandez, T., Garcia-Suarez, O., de Carlos, F., Germana, A., Del Valle, M., Vega, J. A. (2007). The Trk tyrosine kinase inhibitor K252a regulates growth of lung adenocarcinomas. Mol Cell Biochem, 295(1-2), 19-26.
    Poplin, E., Feng, Y., Berlin, J., Rothenberg, M. L., Hochster, H., Mitchell, E., Benson, A. B., 3rd. (2009). Phase III, randomized study of gemcitabine and oxaliplatin versus gemcitabine (fixed-dose rate infusion) compared with gemcitabine (30-minute infusion) in patients with pancreatic carcinoma E6201: a trial of the Eastern Cooperative Oncology Group. J Clin Oncol, 27(23), 3778-3785.
    Rocha Lima, C. M., Green, M. R., Rotche, R., Miller, W. H., Jr., Jeffrey, G. M., Cisar, L. A., Miller, L. L. (2004). Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate. J Clin Oncol, 22(18), 3776-3783.
    Rojanala, S., Han, H., Munoz, R. M., Browne, W., Nagle, R., Von Hoff, D. D., & Bearss, D. J. (2004). The mitotic serine threonine kinase, Aurora-2, is a potential target for drug development in human pancreatic cancer. Mol Cancer Ther, 3(4), 451-457.
    Sasai, K., Katayama, H., Stenoien, D. L., Fujii, S., Honda, R., Kimura, M., Sen, S. (2004). Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil Cytoskeleton, 59(4), 249-263.
    Schwartz, G. K., Carvajal, R. D., Midgley, R., Rodig, S. J., Stockman, P. K., Ataman, O., Shapiro, G. I. (2013). Phase I study of barasertib (AZD1152), a selective inhibitor of Aurora B kinase, in patients with advanced solid tumors. Invest New Drugs, 31(2), 370-380.
    Seo, J. H., Jung, K. H., Son, M. K., Yan, H. H., Ryu, Y. L., Kim, J., Hong, S. S. (2013). Anti-cancer effect of HS-345, a new tropomyosin-related kinase A inhibitor, on human pancreatic cancer. Cancer Lett, 338(2), 271-281.
    Sessa, F., Mapelli, M., Ciferri, C., Tarricone, C., Areces, L. B., Schneider, T. R., Musacchio, A. (2005). Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol Cell, 18(3), 379-391.
    Sloane, D. A., Trikic, M. Z., Chu, M. L., Lamers, M. B., Mason, C. S., Mueller, I., Eyers, P. A. (2010). Drug-resistant aurora A mutants for cellular target validation of the small molecule kinase inhibitors MLN8054 and MLN8237. ACS Chem Biol, 5(6), 563-576.
    Takeshita, M., Koga, T., Takayama, K., Ijichi, K., Yano, T., Maehara, Y., Sueishi, K. (2013). Aurora-B overexpression is correlated with aneuploidy and poor prognosis in non-small cell lung cancer. Lung Cancer, 80(1), 85-90.
    Vader, G., & Lens, S. M. (2008). The Aurora kinase family in cell division and cancer. Biochim Biophys Acta, 1786(1), 60-72.
    Wang, Z., Li, Y., Ahmad, A., Banerjee, S., Azmi, A. S., Kong, D., & Sarkar, F. H. (2011). Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol, 8(1), 27-33.
    Wilkinson, R. W., Odedra, R., Heaton, S. P., Wedge, S. R., Keen, N. J., Crafter, C., Green, S. (2007). AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res, 13(12), 3682-3688.
    Wolpin, B. M., Hezel, A. F., Abrams, T., Blaszkowsky, L. S., Meyerhardt, J. A., Chan, J. A., Fuchs, C. S. (2009). Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol, 27(2), 193-198.
    Xu, D. R., Huang, S., Long, Z. J., Chen, J. J., Zou, Z. Z., Li, J., Liu, Q. (2011). Inhibition of mitotic kinase Aurora suppresses Akt-1 activation and induces apoptotic cell death in all-trans retinoid acid-resistant acute promyelocytic leukemia cells. J Transl Med, 9, 74.
    Yee, K. W., Zeng, Z., Konopleva, M., Verstovsek, S., Ravandi, F., Ferrajoli, A., Giles, F. J. (2006). Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res, 12(17), 5165-5173.
    Zhang, Y., Dang, C., Ma, Q., & Shimahara, Y. (2005). Expression of nerve growth factor receptors and their prognostic value in human pancreatic cancer. Oncol Rep, 14(1), 161-171.
    Zhao, Z. S., Lim, J. P., Ng, Y. W., Lim, L., & Manser, E. (2005). The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell, 20(2), 237-249.
    Zhu, Z., Friess, H., diMola, F. F., Zimmermann, A., Graber, H. U., Korc, M., & Buchler, M. W. (1999). Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol, 17(8), 2419-2428.
    Zhu, Z. W., Friess, H., Wang, L., Bogardus, T., Korc, M., Kleeff, J., & Buchler, M. W. (2001). Nerve growth factor exerts differential effects on the growth of human pancreatic cancer cells. Clin Cancer Res, 7(1), 105-112.
    Zoncu, R., Efeyan, A., & Sabatini, D. M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol, 12(1), 21-35.

    下載圖示 校內:2017-07-29公開
    校外:2017-07-29公開
    QR CODE