| 研究生: |
黃姿瑜 Huang, Tzu-Yu |
|---|---|
| 論文名稱: |
探討介質素-6醣化型在透過SOX2調控肺癌細胞轉移及幹細胞特性中的角色 Investigating the Role of Specific Interleukin-6 Glycoforms in Regulating Lung Cancer Metastasis and Stem-like Behavior via SOX2 Expression |
| 指導教授: |
蘇五洲
Su, Wu-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 肺癌 、介質素-6 、醣化修飾 、SOX-2 高表達 |
| 外文關鍵詞: | Lung cancer, Interleukin-6, Glycosylation, SOX-2 high expression |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在2017年由衛生福利部所公布之統計資料顯示,肺癌的發病率以及死亡率在常見癌症中排名前幾位;因此,如何改善肺癌的治療是有其重要性的。介質素-6 (Interleukin-6) 是一個參與在腫瘤發展以及生物免疫系統中,並且能夠調控許多生物功能的細胞激素。而介質素-6所調節下游傳導途徑包括:JAK / STAT 訊號路徑 (Janus kinase/signal transducers and activators of transcription pathway) 和 MAPK cascade (Mitogen-activated protein kinase cascade) 的活化。在文獻中也指出,介質素-6可能是造成癌症治療中多重抗藥性的因素之一,這是由於被 gp130 / MAPK / STAT3 所調節的三個現象:磷酸化 glycoprotein 過表達、上皮間質間轉化以及幹細胞增生所導致。另外,在先前的文獻中指出這個細胞激素在肺癌中可能透過血液中高分泌量以促進其自分泌,進而導致不良預後和癌症病程的推進。蛋白質轉錄後修飾 (Post-transcription-modification) 在蛋白質生物功能的形成中占了很重要的地位,本研究中我們著重在探討醣化修飾 (Glycosylation) 這一個種類。醣化修飾的發生率相較於磷酸化更加頻繁,可以透過不同程度的後修飾以及修飾種類來改變蛋白的構型及功能。在我們的研究中主要探討的是:肺癌細胞中介質素-6的醣化狀態的改變與細胞行為和信號傳導間的關係。研究結果顯示,當細胞中的介質素-6處於不同的醣化狀態時,將會導致 SOX-2 的表達量以及 STAT3 和 SRC 的磷酸化程度改變。除此之外,在 AS2-IL6-N73Q 細胞中發現高水平的 SOX-2 蛋白與展現幹細胞特性有所關聯。我們也進一步送入 shRNA 去削弱 SOX-2 的表達,並發現當 SOX-2 表達下降時 AS2-IL6-N73Q 細胞的遷移能力也跟著下降。綜合歸納我們的結果可以知道:當肺癌細胞所擁有之介質素-6帶有特定的N-醣基化變異時,可能會通過增加 SOX-2 的表達而促進肺癌細胞轉移,並且可能會展現出幹細胞特性,進而對藥物治療擁有抗性。
The incidence and the mortality rate of lung cancer are ranked in the top few among common cancers, said in recent records. Therefore, improvement of lung cancer treatment become more critical nowadays. Interleukin 6 (IL-6) is a multifunctional cytokine with important role in tumor development and immunobiology. Also, this cytokine modulates downstream signaling pathways including JAK/STAT pathway (Janus kinase/signal transducers and activators of transcription pathway) and MAPK cascade (Mitogen-activated protein kinase cascade). IL-6 is also a contributing factor for multidrug-resistance in cancer due to the gp130/MAPK/STAT3 axis mediates overexpression of p-glycoprotein, EMT transition and stem cell expansion. In lung cancer, autocrine IL-6 and high serum level of IL-6 have correlation with poor prognosis and progression. Post-transcription-modification (PTM) plays an important role in shaping protein biological functions. In this study, we focus on one of the protein PTM, glycosylation, which occurs more frequently than phosphorylation. Our data demonstrated that alteration on glycosylation status of IL-6 in lung cancer cell would influence the cell behavior and signal transduction. The cells had different status of IL-6 glycosylation resulted in varying expression level of SOX-2 and the phosphorylation level of STAT3 and SRC. Also, the high level of SOX-2 protein was found in AS2-IL6-N73Q cell, suggesting that the cell might perform stem-like property. Also, silence of SOX-2 impaired migration of AS2-IL6-N73Q cell. In conclusion, our results supported that loss of specific N-linked glycosylation on IL-6 might promote cell metastasis of lung cancer mainly through increased SOX-2 expression and would result in drug resistance which considered to be one of the stem-like behavior.
References
1. Wang, B.Y., J.Y. Huang, C.Y. Cheng, C.H. Lin, J. Ko, et al., Lung cancer and prognosis in taiwan: a population-based cancer registry. J Thorac Oncol, 2013. 8(9): p. 1128-35.
2. Liu, C.Y., J.J. Hung, B.Y. Wang, W.H. Hsu and Y.C. Wu, Prognostic factors in resected pathological N1-stage II nonsmall cell lung cancer. Eur Respir J, 2013. 41(3): p. 649-55.
3. Maeda, R., J. Yoshida, G. Ishii, T. Hishida, M. Nishimura, et al., Risk factors for tumor recurrence in patients with early-stage (stage I and II) non-small cell lung cancer: patient selection criteria for adjuvant chemotherapy according to the seventh edition TNM classification. Chest, 2011. 140(6): p. 1494-1502.
4. Lemjabbar-Alaoui, H., O.U. Hassan, Y.W. Yang and P. Buchanan, Lung cancer: Biology and treatment options. Biochim Biophys Acta, 2015. 1856(2): p. 189-210.
5. Youlden, D.R., S.M. Cramb and P.D. Baade, The International Epidemiology of Lung Cancer: geographical distribution and secular trends. J Thorac Oncol, 2008. 3(8): p. 819-31.
6. Hunter, C.A. and S.A. Jones, IL-6 as a keystone cytokine in health and disease. Nat Immunol, 2015. 16(5): p. 448-57.
7. Schobitz, B., G. Pezeshki, T. Pohl, U. Hemmann, P.C. Heinrich, et al., Soluble interleukin-6 (IL-6) receptor augments central effects of IL-6 in vivo. Faseb j, 1995. 9(8): p. 659-64.
8. Jones, S.A., Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol, 2005. 175(6): p. 3463-8.
9. Baran, P., R. Nitz, J. Grotzinger, J. Scheller and C. Garbers, Minimal interleukin 6 (IL-6) receptor stalk composition for IL-6 receptor shedding and IL-6 classic signaling. J Biol Chem, 2013. 288(21): p. 14756-68.
10. Yasukawa, K., T. Hirano, Y. Watanabe, K. Muratani, T. Matsuda, et al., Structure and expression of human B cell stimulatory factor-2 (BSF-2/IL-6) gene. Embo j, 1987. 6(10): p. 2939-45.
11. Klimpel, G.R., Soluble factor(s) from LPS-activated macrophages induce cytotoxic T cell differentiation from alloantigen-primed spleen cells. J Immunol, 1980. 125(3): p. 1243-9.
12. Hirano, T., K. Yasukawa, H. Harada, T. Taga, Y. Watanabe, et al., Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature, 1986. 324(6092): p. 73-6.
13. Balkwill, F. and A. Mantovani, Inflammation and cancer: back to Virchow? Lancet, 2001. 357(9255): p. 539-45.
14. Jess, T., E.V. Loftus, Jr., F.S. Velayos, W.S. Harmsen, A.R. Zinsmeister, et al., Risk of intestinal cancer in inflammatory bowel disease: a population-based study from olmsted county, Minnesota. Gastroenterology, 2006. 130(4): p. 1039-46.
15. Singh, R.K., M. Gutman, R. Reich and M. Bar-Eli, Ultraviolet B irradiation promotes tumorigenic and metastatic properties in primary cutaneous melanoma via induction of interleukin 8. Cancer Res, 1995. 55(16): p. 3669-74.
16. Vainio, H. and P. Boffetta, Mechanisms of the combined effect of asbestos and smoking in the etiology of lung cancer. Scand J Work Environ Health, 1994. 20(4): p. 235-42.
17. Landskron, G., M. De la Fuente, P. Thuwajit, C. Thuwajit and M.A. Hermoso, Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res, 2014. 2014: p. 149185.
18. Feghali, C.A. and T.M. Wright, Cytokines in acute and chronic inflammation. Front Biosci, 1997. 2: p. d12-26.
19. Hanash, S.M., S.J. Pitteri and V.M. Faca, Mining the plasma proteome for cancer biomarkers. Nature, 2008. 452(7187): p. 571-9.
20. Scheller, J. and S. Rose-John, Interleukin-6 and its receptor: from bench to bedside. Med Microbiol Immunol, 2006. 195(4): p. 173-83.
21. Trikha, M., R. Corringham, B. Klein and J.F. Rossi, Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res, 2003. 9(13): p. 4653-65.
22. Chang, C.H., C.F. Hsiao, Y.M. Yeh, G.C. Chang, Y.H. Tsai, et al., Circulating interleukin-6 level is a prognostic marker for survival in advanced nonsmall cell lung cancer patients treated with chemotherapy. Int J Cancer, 2013. 132(9): p. 1977-85.
23. Niu, G., K.L. Wright, M. Huang, L. Song, E. Haura, et al., Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene, 2002. 21(13): p. 2000-8.
24. Huang, W.L., H.H. Yeh, C.C. Lin, W.W. Lai, J.Y. Chang, et al., Signal transducer and activator of transcription 3 activation up-regulates interleukin-6 autocrine production: a biochemical and genetic study of established cancer cell lines and clinical isolated human cancer cells. Mol Cancer, 2010. 9: p. 309.
25. Yeh, H.H., W.W. Lai, H.H. Chen, H.S. Liu and W.C. Su, Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene, 2006. 25(31): p. 4300-9.
26. Kishimoto, T., Interleukin-6: from basic science to medicine--40 years in immunology. Annu Rev Immunol, 2005. 23: p. 1-21.
27. Wei, L.H., M.L. Kuo, C.A. Chen, C.H. Chou, K.B. Lai, et al., Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene, 2003. 22(10): p. 1517-27.
28. Pinho, S.S. and C.A. Reis, Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer, 2015. 15(9): p. 540-55.
29. Lau, K.S. and J.W. Dennis, N-Glycans in cancer progression. Glycobiology, 2008. 18(10): p. 750-60.
30. Fardini, Y., V. Dehennaut, T. Lefebvre and T. Issad, O-GlcNAcylation: A New Cancer Hallmark? Front Endocrinol (Lausanne), 2013. 4: p. 99.
31. Magalhaes, A., H.O. Duarte and C.A. Reis, Aberrant Glycosylation in Cancer: A Novel Molecular Mechanism Controlling Metastasis. Cancer Cell, 2017. 31(6): p. 733-735.
32. Dall'Olio, F. and M. Trinchera, Epigenetic Bases of Aberrant Glycosylation in Cancer. Int J Mol Sci, 2017. 18(5).
33. Barkeer, S., S. Chugh, S.K. Batra and M.P. Ponnusamy, Glycosylation of Cancer Stem Cells: Function in Stemness, Tumorigenesis, and Metastasis. Neoplasia, 2018. 20(8): p. 813-825.
34. Wang, X., J. Gu, H. Ihara, E. Miyoshi, K. Honke, et al., Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem, 2006. 281(5): p. 2572-7.
35. Avruch, J., D. Zhou, J. Fitamant and N. Bardeesy, Mst1/2 signalling to Yap: gatekeeper for liver size and tumour development. Br J Cancer, 2011. 104(1): p. 24-32.
36. 36. Peng, C., Y. Zhu, W. Zhang, Q. Liao, Y. Chen, et al., Regulation of the Hippo-YAP Pathway by Glucose Sensor O-GlcNAcylation. Mol Cell, 2017. 68(3): p. 591-604.e5.
37. Salah, Z., E. Itzhaki and R.I. Aqeilan, The ubiquitin E3 ligase ITCH enhances breast tumor progression by inhibiting the Hippo tumor suppressor pathway. Oncotarget, 2014. 5(21): p. 10886-900.
38. Morvaridi, S., D. Dhall, M.I. Greene, S.J. Pandol and Q. Wang, Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis. Sci Rep, 2015. 5: p. 16759.
39. Sneha, S., R.P. Nagare, P. Manasa, S. Vasudevan, A. Shabna, et al., Analysis of Human Stem Cell Transcription Factors. Cell Reprogram, 2019.
40. Yu, Z., T.G. Pestell, M.P. Lisanti and R.G. Pestell, Cancer stem cells. Int J Biochem Cell Biol, 2012. 44(12): p. 2144-51.
41. Ayob, A.Z. and T.S. Ramasamy, Cancer stem cells as key drivers of tumour progression. J Biomed Sci, 2018. 25(1): p. 20.
42. Zhou, K., C. Zhang, H. Yao, X. Zhang, Y. Zhou, et al., Knockdown of long non-coding RNA NEAT1 inhibits glioma cell migration and invasion via modulation of SOX2 targeted by miR-132. Mol Cancer, 2018. 17(1): p. 105.
43. Li, Z.R., Y. Jiang, J.Z. Hu, Y. Chen and Q.Z. Liu, SOX2 knockdown inhibits the migration and invasion of basal cell carcinoma cells by targeting the SRPK1-mediated PI3K/AKT signaling pathway. Oncol Lett, 2019. 17(2): p. 1617-1625.
44. Tang, L., D. Wang and D. Gu, Knockdown of Sox2 Inhibits OS Cells Invasion and Migration via Modulating Wnt/beta-Catenin Signaling Pathway. Pathol Oncol Res, 2018. 24(4): p. 907-913.
45. Abnave, P., E. Aboukhatwa, N. Kosaka, J. Thompson, M.A. Hill, et al., Epithelial-mesenchymal transition transcription factors control pluripotent adult stem cell migration in vivo in planarians. Development, 2017. 144(19): p. 3440-3453.
46. Reig, G., E. Pulgar and M.L. Concha, Cell migration: from tissue culture to embryos. Development, 2014. 141(10): p. 1999-2013.
47. Liao, T.T. and M.H. Yang, Revisiting epithelial-mesenchymal transition in cancer metastasis: the connection between epithelial plasticity and stemness. Mol Oncol, 2017. 11(7): p. 792-804.
48. Grzegrzolka, J., M. Biala, P. Wojtyra, C. Kobierzycki, M. Olbromski, et al., Expression of EMT Markers SLUG and TWIST in Breast Cancer. Anticancer Res, 2015. 35(7): p. 3961-8.
49. Das, V., S. Bhattacharya, C. Chikkaputtaiah, S. Hazra and M. Pal, The basics of epithelial-mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective. J Cell Physiol, 2019.
50. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8.
51. Sun, J., K. Xu, Y. Qiu, H. Gao, J. Xu, et al., Bufalin reverses acquired drug resistance by inhibiting stemness in colorectal cancer cells. Oncol Rep, 2017. 38(3): p. 1420-1430.
52. Sakaguchi, M., M. Oka, T. Iwasaki, Y. Fukami and C. Nishigori, Role and regulation of STAT3 phosphorylation at Ser727 in melanocytes and melanoma cells. J Invest Dermatol, 2012. 132(7): p. 1877-85.
53. Decker, T. and P. Kovarik, Serine phosphorylation of STATs. Oncogene, 2000. 19(21): p. 2628-37.
54. Aggarwal, B.B., A.B. Kunnumakkara, K.B. Harikumar, S.R. Gupta, S.T. Tharakan, et al., Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci, 2009. 1171: p. 59-76.
55. Darnell, J.E., Jr., STATs and gene regulation. Science, 1997. 277(5332): p. 1630-5.
56. Liu, Z.D., Z.X. Mou, X.H. Che, K. Wang, H.X. Li, et al., ARHGAP15 regulates lung cancer cell proliferation and metastasis via the STAT3 pathway. Eur Rev Med Pharmacol Sci, 2019. 23(13): p. 5840-5850.
57. Pei, G., Y. Lan, D. Chen, L. Ji and Z.C. Hua, FAK regulates E-cadherin expression via p-SrcY416/p-ERK1/2/p-Stat3Y705 and PPARgamma/miR-125b/Stat3 signaling pathway in B16F10 melanoma cells. Oncotarget, 2017. 8(8): p. 13898-13908.
58. Rizzino, A., Sox2 and Oct-3/4: a versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells. Wiley Interdiscip Rev Syst Biol Med, 2009. 1(2): p. 228-236.
59. Niwa, H., Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct, 2001. 26(3): p. 137-48.
60. Gravdal, K., O.J. Halvorsen, S.A. Haukaas and L.A. Akslen, A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res, 2007. 13(23): p. 7003-11.
61. De Marzo, A.M., B. Knudsen, K. Chan-Tack and J.I. Epstein, E-cadherin expression as a marker of tumor aggressiveness in routinely processed radical prostatectomy specimens. Urology, 1999. 53(4): p. 707-13.
62. Shiozaki, H., H. Oka, M. Inoue, S. Tamura and M. Monden, E-cadherin mediated adhesion system in cancer cells. Cancer, 1996. 77(8 Suppl): p. 1605-13.
63. Medici, D., E.D. Hay and B.R. Olsen, Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell, 2008. 19(11): p. 4875-87.
64. Dhasarathy, A., D. Phadke, D. Mav, R.R. Shah and P.A. Wade, The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer. PLoS One, 2011. 6(10): p. e26514.
65. Shih, J.Y. and P.C. Yang, The EMT regulator slug and lung carcinogenesis. Carcinogenesis, 2011. 32(9): p. 1299-304.
66. Yang, F., J. Zhang and H. Yang, OCT4, SOX2, and NANOG positive expression correlates with poor differentiation, advanced disease stages, and worse overall survival in HER2(+) breast cancer patients. Onco Targets Ther, 2018. 11: p. 7873-7881.
67. Zhao, W.S., W.P. Yan, D.B. Chen, L. Dai, Y.B. Yang, et al., Genome-scale CRISPR activation screening identifies a role of ELAVL2-CDKN1A axis in paclitaxel resistance in esophageal squamous cell carcinoma. Am J Cancer Res, 2019. 9(6): p. 1183-1200.
68. Chen, L., J. He, J. Zhou, Z. Xiao, N. Ding, et al., EIF2A promotes cell survival during paclitaxel treatment in vitro and in vivo. J Cell Mol Med, 2019.