簡易檢索 / 詳目顯示

研究生: 王啓豪
Wang, Chi-Hao
論文名稱: 煤礦揮發份對碳熱還原反應在不同升溫歷程下的影響
Effect of Volatile Matter in Coal on the Carbothermic Reduction under Different Heating Process
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 128
中文關鍵詞: 碳熱還原反應煤礦揮發份升溫速率
外文關鍵詞: carbothermic reduction, volatile matter, heating rate
相關次數: 點閱:117下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高爐是目前主要的煉鐵製程,但燒結及煉焦工廠的汙染處理成本逐年提高,故許多鋼鐵廠致力於開發新型的綠色煉鐵製程,以期能擺脫對燒結礦、焦碳等原料限制並減少污染。

    高料層煉鐵製程屬煤基直接還原法,此法為將鐵礦與煤礦混合造粒製成煤鐵礦複合球團後,在高溫下進行碳熱還原反應(Carbothermic Reduction),使鐵礦還原成高金屬化率之直接還原鐵(Direct Reduced Iron, DRI)。除了煤礦中的固態碳可作為主要的還原劑外,煤礦的揮發份(Volatile Matter, VM)亦會在高溫下釋出,其主要成分為碳氫化合物,經高溫裂解後可生成氫氣並幫助球團還原,然而隨著升溫歷程及煤礦VM含量的不同,VM釋出的情況會有所改變,對球團還原也會有影響。

    為了探討煤礦揮發份對碳熱還原反應的影響,本研究使用氣體分析儀量測在探討不同升溫歷程下揮發份分解情形(即觀測乾餾煤礦的產氣),有別於中斷實驗的化學分析,氣體分析可提供連續且即時的球團還原情形,且可區隔出煤礦中的VM與碳對球團還原的幫助,VM對球團還原的幫助即是利用球團的產氣減去煤礦乾餾的產氣後定量所得。

    實驗結果中顯示,隨著煤礦VM含量與升溫速率的提升,愈多H2能有效地釋出並幫助球團還原,在較快的升溫速率下,煤礦中VM釋出與碳氫化合物裂解的溫度與時間點較接近,讓碳氫化合物成功裂解成H2並幫助球團還原,避免VM在低於碳氫化合物開始裂解的溫度下釋出後被直接吹離球團,而不能裂解成H2,而從煤礦乾餾的數據也可知,在較快的升溫速率下,煤礦會釋出較多的CH4以及H2。

    Blast furnace is the main ironmaking process now, but owing to the pollution from sintering and coking process, a variety of eco-friendly ironmaking process are actively researching and developing. Among them, carbothermic reduction of iron ore/coal composite pellets is considered to have potential for reducing greenhouse gas emission.
    The main reductant for carbothermic reduction is carbon, but the volatile matter in the coal will also help the reduction of iron oxide. The main components of volatile matter are hydrocarbons, which will crack and release the reductant - hydrogen during the carbothermic reduction.
    In this study, we focus on the effect of the volatile matter on the reduction of the iron ore-coal composite pellets under three kinds of heating rate. By using gas analyzer, which can provide us instant and continuous data about the pellet, we could quantify the reduction degree of the pellets. Besides that, to confirm the credibility of gas analysis, we interrupt the carbothermic experiement with different temperature and then send the reduced pellets to do the chemical analysis.
    The result shows that with the increase of volatile content in coal and heating rate, more H2 can be released and reduce the pellets. At faster heating rate, the temperature and time of VM released and hydrocarbon crack are closer, so the hydrocarbons can successfully crack into H2 rather than blown away from pelles directly without cracking.

    摘要 I 致謝 VI 目錄 VII 圖目錄 X 表目錄 XVII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的及內容 4 第二章 文獻回顧 8 2.1 碳熱還原煉鐵製程的發展史 8 2.2 RHF與PSH煉鐵製程 9 2.3 碳熱還原反應機制 11 2.4 煤礦中VM對球團還原的影響 12 2.5 固定碳氧比對球團還原的影響 14 2.6 鐵礦種類對球團還原的影響 15 第三章 實驗方法與步驟 27 3.1 原料 27 3.1.1 鐵礦 27 3.1.2 煤礦 27 3.1.3 黏結劑 28 3.2 實驗設備 28 3.2.1 原料前處理及配料成形設備 28 3.2.2 高溫爐、冰水機、移動式進料設備以及氣體分析儀 29 3.2.3 樣品後處理 29 3.3 實驗分析方法 30 3.3.1 樣品化學分析 30 3.3.2 氣體分析 31 3.4 實驗步驟 35 3.4.1 配料與球團成形 35 3.4.2 高溫碳熱還原實驗及氣體分析、影像觀測 36 3.5 樣品保存與化學分析 37 第四章 結果與討論 43 4.1 升溫歷程對球團產氣與還原的影響 43 4.1.1 不同升溫歷程下球團於還原過程中的產氣 43 4.1.2 不同升溫歷程下球團的還原度 45 4.1.3 不同升溫歷程下球團的碳使用效率與殘碳率 46 4.1.4 不同升溫歷程下球團中氧化鐵還原進程溫度 48 4.2 煤礦之VM含量對球團產氣與還原影響 48 4.2.1 不同VM含量下球團於還原過程中的產氣 49 4.2.2 VM對球團還原的影響 52 4.2.3 不同VM含量下球團的還原度 56 4.2.4 不同VM含量下球團的碳使用效率與殘碳率 57 4.2.5 固定碳氧比對球團還原的影響 60 4.3 鐵礦種類對球團產氣與還原之影響 62 4.3.1 不同鐵礦種類下球團於還原過程中的產氣 62 4.3.2 不同鐵礦種類下球團的還原度 64 4.3.3 不同鐵礦種類下球團的碳使用效率與殘碳率 64 4.3.4 不同鐵礦種類下的氧化鐵還原進程溫度 66 4.4 氣體分析數據與化學分析數據的比較 67 第五章 結論 122 參考文獻 126

    參考文獻
    [1] R. K. Pachauri, M. R. Allen, V. R. Barros, J. Broome, W. Cramer, R. Christ, et al., Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: IPCC, 2014.
    [2] S. Tonomura, "Outline of course 50," Energy Procedia, vol. 37, pp. 7160-7167, 2013.
    [3] S. Watakabe, K. Miyagawa, S. Matsuzaki, T. Inada, Y. Tomita, K. Saito, et al., "Operation trial of hydrogenous gas injection of COURSE50 project at an experimental blast furnace," ISIJ international, vol. 53, pp. 2065-2071, 2013.
    [4] J.-H. Tsai, K.-H. Lin, C.-Y. Chen, J.-Y. Ding, C.-G. Choa, and H.-L. Chiang, "Chemical constituents in particulate emissions from an integrated iron and steel facility," Journal of Hazardous Materials, vol. 147, pp. 111-119, 2007.
    [5] 陳秉詮編撰, "煉鋼製程的節能減碳," 科學發展月刊, vol. 486, pp. 20-24, 2013年.
    [6] S. K. Dutta and R. Sah, "Smelting Reduction Processes," in Encyclopedia of Iron, Steel, and Their Alloys, ed: CRC Press, 2015, pp. 3208-3236.
    [7] H. Michishita and H. Tanaka, "Prospects for coal-based direct reduction process," Kobelco Technology Review, vol. 29, pp. 69-70, 2010.
    [8] 劉世賢編撰, "鋼鐵廠固雜料產出及其資源化技術介紹," 中工高雄工會刊 vol. 第18卷第2期, pp. 56-63, 2010.
    [9] W. Lu and D. F. Huang, "The evolution of ironmaking process based on coal-containing iron ore agglomerates," ISIJ international, vol. 41, pp. 807-812, 2001.
    [10] J. R. Vehec, "Technology Roadmap Research Program for the Steel Industry," American Iron and Steel Institute2010.
    [11] X. Chunbao Charles and D.-q. Cang, "A brief overview of low CO2 emission technologies for iron and steel making," Journal of iron and steel research, International, vol. 17, pp. 1-7, 2010.
    [12] M. Atsushi, H. Uemura, and T. Sakaguchi, "MIDREX Processes," Kobelco Technology Review, p. 50, 2010.
    [13] 黄雄源 和 周兴灵, "现代非高炉炼铁技术的发展现状与前景 (一)," 金属材料与冶金工程, pp. 49-56, 2007.
    [14] S. Kikuchi, S. Ito, I. Kobayashi, O. Tsuge, and K. Tokuda, "ITmk3 process," Kobelco technology review, vol. 29, pp. 77-84, 2010.
    [15] H. Ishikawa, J. Kopfle, J. Mcclelland, and J. Ripke, "Rotary hearth furnace technologies for iron ore and recycling applications," Archives of metallurgy and materials, vol. 53, pp. 541-545, 2008.
    [16] 林耀堂, "以椰殼炭與鐵礦進行碳熱還原之研究," 成功大學材料科學及工程學系學位論文, 2012.
    [17] A. Hasanbeigi, M. Arens, and L. Price, "Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: a technical review," Renewable and Sustainable Energy Reviews, vol. 33, pp. 645-658, 2014.
    [18] J. Moon and V. Sahajwalla, "Investigation into the role of the boudouard reaction in self-reducing iron oxide and carbon briquettes," Metallurgical and Materials Transactions B, vol. 37, pp. 215-221, 2006.
    [19] S. M. Jung and S. H. Yi, "A Kinetic Study on Carbothermic Reduction of Hematite with Graphite Employing Thermogravimetry and Quadruple Mass Spectrometry," steel research international, vol. 84, pp. 908-916, 2013.
    [20] R.-f. Wei, D.-q. Cang, L.-l. Zhang, and Y.-y. Bai, "Staged reaction kinetics and characteristics of iron oxide direct reduction by carbon," International Journal of Minerals, Metallurgy, and Materials, vol. 22, pp. 1025-1032, 2015.
    [21] S. M. Jung and S. H. Yi, "Kinetic study on reduction in carbon composite magnetite pellet employing thermogravimetry and quadruple mass spectrometry," Ironmaking & Steelmaking, vol. 41, pp. 38-46, Jan 2014.
    [22] Y. Takyu, T. Murakami, S. H. Son, and E. Kasai, "Reduction Mechanism of Composite Consisted of Coal and Hematite Ore by Volatile Matter at 700-1 100 K," ISIJ International, vol. 55, pp. 1188-1196, 2015.
    [23] H. Konishi, K. Ichikawa, and T. Usui, "Effect of residual volatile matter on reduction of iron oxide in semi-charcoal composite pellets," ISIJ international, vol. 50, pp. 386-389, 2010.
    [24] K. Akhtar, A. Tahmasebi, L. Tian, J. Yu, and J. Lucas, "An experimental study of direct reduction of hematite by lignite char," Journal of Thermal Analysis and Calorimetry, vol. 123, pp. 1111-1118, 2016.
    [25] H.-b. Zuo, Z.-w. Hu, J.-l. Zhang, J. Li, and Z.-j. Liu, "Direct reduction of iron ore by biomass char," International Journal of Minerals, Metallurgy, and Materials, vol. 20, pp. 514-521, 2013.
    [26] A. A. El-Geassy, K. S. A. Halim, M. Bahgat, E. A. Mousa, E. E. El-Shereafy, and A. A. El-Tawil, "Carbothermic reduction of Fe2O3/C compacts: comparative approach to kinetics and mechanism," Ironmaking & Steelmaking, vol. 40, pp. 534-544, Oct 2013.
    [27] 张旭, 张建良, 郭豪, 和 柏凌, "铁碳复合球团直接还原试验研究," 矿冶工程, vol. 29, pp. 55-58.
    [28] Y. Tanaka, T. Ueno, K. Okumura, and S. Hayashi, "Reaction Behavior of Coal Rich Composite Iron Ore Hot Briquettes under Load at High Temperatures until 1400. DEG. C," ISIJ international, vol. 51, pp. 1240-1246, 2011.
    [29] S. Mishra and G. G. Roy, "Effect of Amount of Carbon on the Reduction Efficiency of Iron Ore-Coal Composite Pellets in Multi-layer Bed Rotary Hearth Furnace (RHF)," Metallurgical and Materials Transactions B, vol. 47, pp. 2347-2356, 2016.
    [30] J.-X. Fu, C. Zhang, W.-S. Hwang, Y.-T. Liau, and Y.-T. Lin, "Exploration of biomass char for CO 2 reduction in RHF process for steel production," International Journal of Greenhouse Gas Control, vol. 8, pp. 143-149, 2012.
    [31] T. Murakami, T. Nishimura, and E. Kasai, "Lowering reduction temperature of iron ore and carbon composite by using ores with high combined water content," ISIJ international, vol. 49, pp. 1686-1693, 2009.
    [32] T. Murakami, T. Nishimura, N. Tsuda, and E. Kasai, "Quantitative Analysis on Contribution of Direct Reduction of Iron Oxide in Carbon Composite," Isij International, vol. 53, pp. 1763-1769, 2013.
    [33] C. Funada, T. Murakami, and E. Kasai, "Reduction Mechanism of FexO—Graphite Composite under Elevating Temperature," ISIJ International, vol. 56, pp. 233-238, 2016.
    [34] L. Boon-Brett, J. Bousek, and P. Moretto, "Reliability of commercially available hydrogen sensors for detection of hydrogen at critical concentrations: part II–selected sensor test results," International Journal of Hydrogen Energy, vol. 34, pp. 562-571, 2009.
    [35] 張皓荀, "煤鐵礦複合球團於不同溫度歷程之碳熱還原和形貌變化研究," 國立成功大學材料科學及工程學系學位論文, 2015.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE