| 研究生: |
廖基宏 Liao, Chi-hung |
|---|---|
| 論文名稱: |
整合型金屬粉末霧化與分級製程研究 Combined Processes of Atomization and Classification in Production of Metal Powder with a Twin-Fluid Atomizer |
| 指導教授: |
王覺寬
Wang, Muh-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 175 |
| 中文關鍵詞: | 分級 、金屬噴霧 、基板 |
| 外文關鍵詞: | substrate, classification, molten spray |
| 相關次數: | 點閱:94 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以實驗的方法探討金屬粉末霧化與氣動篩分製程的整合。首先探討金屬噴霧在基板衝擊效應下之霧化特性及粉末分佈情形,所探討之參數包括:基板與噴嘴之距離、金屬噴射與氣體霧化之壓差、金屬熔湯之溫度以及不同位置量測之結果。其次利用SiO2粉末探討氣動篩分機制,操作參數包括:主流道速度、側流道速度、側流道開口位置,最後整合金屬粉末霧化與氣動篩分機制。實驗結果顯示,金屬粉末平均粒徑在基板與噴嘴間距、壓差、金屬熔湯溫度的影響下,可分別產生6.2μm、5.89μm、4.94μm之微粒。結果亦顯示,氣動篩分裝置藉由主、側流道速度的變化與側流道位置變化可以將粉末進行分級。整合金屬粉末霧化與篩分製程實驗結果顯示,在PN2=4.0bar,PM=1.5bar,H=8mm,15° Substrate,TM=400℃,主流道速度為1m/s,側流道速度為14m/s時,側流道的金屬粉末平均粒徑為4.18μm、Dv90為20.25μm、V0-15為80.03%,顯示此製程可以同時完成金屬粉末霧化與分級之結果,值得加以推廣應用。
This research investigates the combination of the atomization and classification processes in the production of metal powder. The atomization process was performed with the twin-fluid atomizers. The classification process was performed by the impingement of the molten spray on the substrate as well as the aerodynamic effects in the duct of the powder collection device. The parameters of this study include the distance between the atomizer and substrate, pressure of atomization, temperature of melt and the positions of the powder collection device. Results show the mean particle size of the metal powder was lowered down to 6.2μm, 5.89μm and 4.94μm, respectively, under different substrate configurations. The particle size was further lowered down to 4.18μm under the conditions of atomization process as PN2 = 4.0bar, PM = 1.5bar, H = 8mm, TM = 400℃, and under the conditions of the powder collection device with the velocities of primary and secondary channel being 1m/s and 14m/s, respectively. It turns out that Dv90 can be lowered down to 20.25μm and most of the particles is within 15μm, i.e., V0-15 was up to 80.03%. It can be concluded that this technique can be used to produce extra-fine metal powders for various industrial applications.
[1] 馮慶芬,“粉末冶金學”,新文京開發出版有限公司,第一章,民國91年5月。
[2] Zhang Shuguang, “A Novel Ultrasonic Atomization Atomization Process for Producing Spherical Metal Powder,” Acta Metallurgica Sinica, Vol.38, No.8, pp.888-892, 2002。
[3] 馮慶芬,“粉末冶金學”,新文京開發出版有限公司,第二章,民國91年5月。
[4] 徐仁輝,“粉末冶金概論”,新文京開發出版有限公司,第三章,民國91年9月。
[5] Lefebvre, A. H., “Atomization and Spray,” Hemisphere Publishing Corporation, New York, pp.1-25 , 1989.
[6] Castleman, R. A., Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol. 6, pp. 369-376, 1930.
[7] Lefebvre, A. H., “Gas Turbine Combustion,” Chapter 10, Hemisphere Publishing Corporation, New York, 1983.
[8] Dombrowski, N. and Johns, W. R., “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.
[9] Stapper, B. E., Sowa, W. A. and Samuelsen, G. S., “An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 39-45, 1992.
[10] Fraser, R. P., “Liquid Fuel Atomization, ” Sixth Symposium﹙International﹚on Combustion, Rein-hold, New York, pp.687-701, 1957.
[11] Simmons, H. C., “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report, No.7901/2-0, 1979.
[12] Cubberly and William, H. Metal Handbook, nineth ed., Vol. 7, Powder Metallurgy, American Society for Metal, 1984.
[13] Tallmadge, J. A., “Powder Production by Gas and Water Atomization of Liquid Metals,” Powder Metallurgy Processing, Kuhn, H. S. and Lawley, A. (eds.), Academic Press, New York, NY, 1978, pp. 1-32.
[14] Tamura, K. and Takeda, T., “Production of Copper Powder by Atomization,” Trans. Nat. Res. Inst. Metals (Japan), 1963, vol. 5,pp. 252-256.
[15] German and Randall, M., Powder Metallurgy Science, Metal Powder Industries Federation, Princeton, N.J., 1994.
[16] Nukiyama, S. and Tanasawa, Y., “Experiments on Atomization of Liquids in an Airstream,” Transaction of JSME, Vol. 5, No. 18, pp. 68-75, 1939.
[17] Gretzinger, J. and Marshall, W.R. Jr., “Characteristics of Pneumatic Atomization,” AIChE Journal, Vol. 7, No. 2, pp. 312-318, Jun. 1961.
[18] Kim, K.Y., and Marshall, W.R. Jr., “Drop-Size Distributions from Pneumatic Atomizers,” AIChE Journal, Vol. 17, No. 3, pp. 575-584, May 1971.
[19] Tate, R.W., “Droplet Size Distribution Data for Internal-Mixing Pneumatic Atomizers,” Proceeding of the 3rd ICLASS," pp. IIC/1/1-13, 1985.
[20] Rizkalla, A. A. and Lefebvre A.H., “Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,” J. Eng. Power, pp. 173-179, April 1975.
[21] Rizkalla, A. A. and Lefebvre A.H., “The Influence of Air and Liquid Properties on Airblast Atomization,” J. Fluids Eng., Vol. 97, pp. 316-320, 1975
[22] Rizk, N. K. and Lefebvre, A. H., “Influence of Atomizer Design Feature on Mean Drop Size,” AIAA Journal, Vol. 21, No. 8, pp.1139-1142, 1983.
[23] Beck, J., Lefebvre, A. H. and Koblish, T., “Air Blast Atomization at Conditions of Low Air Velocity,” Paper No AIAA- 89-0217, 1989.
[24] Beck, J. E., Lefebvre A. H. and Koblish, T. R., “Liquid Sheet Disintegration by Impinging Air Streams,”Atomization and Sprays, Vol. 1, No. 2, pp. 155-170, 1991.
[25] Beck, J. E. and Lefebvre A. H., “Air Blast Atomization at Conditions of Low Air Velocity,” J. Propulsion, Vol. 7, NO.2, March-April, 1991.
[26] Aligner, M. and Wittig, S., “Swirl and Counter Swirl Effects in Prefilming Air Blast Atomization,” Trans. ASME, J. Eng. Power, Vol. 102, pp.706-710, 1980.
[27] 許耀仁,“氣衝式平面噴嘴液膜霧化特性之研究”,國立成功大學航太所碩士論文,1993。
[28] Sattelmayer, T. and Witting, S., ”Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 108, pp.465-472, 1986.
[29] Rizk, N.K. and Lefebvre, A.H., “Spray Characteristics of Plain-jet Airblast Atomizer,” Transaction of The ASME vol. 106, July 1984.
[30] Press, C., Gupta, A.K. and Semerjian, H.G., “Aerodynamic Effects on Fuel Spray Characteristics: Air-assist Atomizer, ” HTD-vol.104, pp.111-119, 1988.
[31] Kevin, S. Chen and Lefebvre, A. H., “Spray Cone Angle of Effervescent Atomizers, ” Atomization and Sprays, vol. 4, pp.291-301, 1994.
[32] 楊坤和,“研究型氣助式噴嘴之噴霧特性研究”,國立成功大學航太所碩士論文,1992。
[33] 徐明生,“雙流體式平面噴嘴霧化特性之研究”,國立成功大學航太所碩士論文,1995。
[34] 王承光,“氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究”,國立成功大學航太所碩士論文,1996。
[35] Mates, S P and Settles, G S “High-speed imaging of liquid metal atomization by two different close-coupled nozzles,” Advances in Powder Metallurgy and Particulate Materials--1996. Vol. 1; Washington, DC; USA; 16-21 June 1996. pp. 1.67-1.80. 1996.
[36] Iver E. Anderson, Robert L. Terpstra, “Progress toward gas atomization processing with increased uniformity and control,” Materials Science and Engineering Vol.326, Issue.1, pp.101-109, March 2002
[37] 康煜昌,“平面型液態金屬霧化器之霧化特性研究”,國立成功大學航太所碩士論文,1998。
[38] 楊舒然,“強制式液態金屬霧化器之控制參數研究”,國立成功大學航太所碩士論文,1999。
[39] 楊哲睿,“液態金屬在噴嘴不同長寬比下之霧化特性”,國立成功大學航太所碩士論文,2002。
[40] 郭振展,“液態金屬在噴嘴低長寬比下之霧化特性”,國立成功大學航太所碩士論文,2003。
[41] 陳哲萍,“超微粒錫粉銲料之噴霧製造研究”,國立成功大學航太所碩士論文,2004。
[42] Ünal, A., “Effect of Processing Variables on Particle Size in Gas Atomization of Rapidly Solidified Aluminium Powders,” Materials Science and Technology, Vol.3, pp.1029-1039, 1987.
[43] Sedat Őzbilen, “Influence of atomizing gas on particle shape of Al and Mg powder,” Powder Technology. , Vol.102, Issue.2, Mar. 3, pp. 109-119, 1999.
[44] Ashgriz, N. and Givi, P., “Binary Collision Dynamics of Fuel Droplets,” Heat and Fluid Flow, Vol.8, No.3, pp.205-210, 1987.
[45] Chiang,C. K., Poo,J. Y. and Lin,T. H., “Number of Result Drops in Binary Liquid Drop Collision,” Picast, Cofference Proceedings Vol.Ⅱ, pp.577-589, 1994.
[46] Orme, Melissa, “Experiment on Droplet Collisions, Bounce, Coalescence and Disruption,” Prog. Energy Combust. Sci. Vol.23, pp.65-79, 1997.
[47] 林明龍,“噴霧粒子在側噴流衝擊下之動態特性”,國立成功大學航太所碩士論文,2001。
[48] 高韶豪,“微型噴嘴單束噴霧流在側吹下之粒子分布”,國立成功大學航太所碩士論文,2003。
[49] 陳品任,“金屬噴霧在衝擊氣流作用下之霧化特性”,國立成功大學航太所碩士論文,2005。
[50] Rein, M. “Phenomena of liquid droplet impact,” Fluid Dyn. Res., Vol.12, pp.61-93, 1993.
[51] Manzello, S.L., and Yang, J.C., “An experimental investigation of water droplet impingement on a heat wax surface,” International Journal of Heat and Mass Transfer, Vol.47, pp.1701-1709, 2004.
[52] 徐明生,“內混式平面型液態金屬噴嘴之霧化機構及其在噴覆成型之應用”,國立成功大學航太所博士論文,1999。
[53] Haferl.S, V. Butty, D. Poulikakos, J. Giannakouros, K Boomsma, C.M. Megaridis, V. Nayagam”Freezing fynamics of molten solder droplets impacting onto flat substrates in reduced gravity,” International Journal of Heat and Mass Transfer, Vol.44, pp.3513-3528, 2001.
[54] Haferl.S, D. Poulikakos, “Experimental investigation of the transient impact fluid dynamic and solidification of a molten microdroplet pile up,” International Journal of Heat and Mass Transfer, Vol.46, pp.535-550, 2003.
[55] Newbery, A. P., Rayment, T., and Grant, P.S., “A Particle image Velocity Investigation of In-flight and Deposition Behaviour of Steel Droplets during Electric Arc Sprayforming,” Materials Science and Engineering A Vol.383, pp.137-145, 2004.
[56] 黃建敦,“金屬噴霧在基板衝擊效應下之霧化特性”,國立成功大學航太所碩士論文,2006。
[57] 張皓昀,“基板衝擊對超微粒金屬粉末噴霧製程之效應”,國立成功大學航太所碩士論文,2007。
[58] 王覺寬,康煜昌,徐明生,楊舒然,“氣助式平面型液態金屬霧化器特性研究”,40th Conference on Aero. and Astro. of ROC, Taichung, Taiwan, ROC, Dec, 1998