簡易檢索 / 詳目顯示

研究生: 黃隱玉
Huang, Yin-Yu
論文名稱: 大型化套管式離岸風機支撐結構設計之研究
Design of Large-scale Offshore Wind Turbines with Appropriate Jacket-type Support Structure
指導教授: 朱聖浩
Ju, Shen-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 131
中文關鍵詞: 大型化離岸風機等額定瓦數圖套管式離岸風機支撐結構設計用鋼量
外文關鍵詞: Large-scale offshore wind turbine, Rated power contour, Jacket-type support structure, Total design steel weights
相關次數: 點閱:152下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由朱聖浩老師團隊所開發的離岸風機分析與設計程式WindTurb整合了IEC61400-3以及DNV GL所提供之設計載重組更進一步考慮地震以及疲勞,並針對NREL 5MW 參考風機進行支撐結構的設計。然而5MW的風機已經無法滿足現在的能源需求,為了使風機在發電上更具有競爭力,大型化是必然的趨勢。由於葉片尺寸的資料為風機製造商的商業機密,本研究以NREL 5MW 參考風機的參數為改變風機葉片尺寸的依據,以額定風速12m/s的條件下提供了等額定瓦數圖,以方便使人了解額定瓦數、半徑以及弦長的關係,並將大型化的參數整合於WindTurb,使用者只需在輸入檔開頭輸入三個參數即可更改風機的尺寸進行支撐結構的分析以及設計。最後針對最大容許饒度線上的尺寸進行IEC61400-3設計載重組分析,得到設計用鋼量與額定瓦數之間的關係。電腦輔助分析程式由 朱聖浩教授研究團隊所開發,分析程式與研究成果皆為公開資源。

    The offshore wind turbine analysis and design program WindTurb developed by JU team integrates the design load cases provided by IEC61400-3 and DNV GL, further considering earthquake and fatigue, and design the NREL 5MW reference wind turbine support structure. However, the 5MW offshore wind turbine has been unable to achieve the current energy demand. In order to be more competitive in power generation, use large-scale offshore wind turbine is an inevitable trend. Since the blade size data is the trade secret of the wind turbine manufacturer, this study uses the NREL 5MW reference wind turbine parameters to change the blade size, and provides rated power contour with 12m/s rated wind speed to show the relationship between rated power, radius, and chord. After the large-scale parameters are integrated into WindTurb, the user can change the size of the offshore wind turbine to analyze and design the support structure by typing three parameters at the beginning of the input file. Finally, the size on the deflection limitation line are analyzed under the ultimate strength design load cases, and the relationship between the total design steel weight and the rated power is obtained. Note that the computer programs developed by the research team of Shen-Haw Ju are open and free to use.

    摘要I AbstractII AcknowledgementIII Chapter 1 Introduction1 1.1 Background and Purpose1 1.2 Literature Review2 1.2.1 Study of Wind Load2 1.2.2 Study of Blades and large-scale wind turbines3 1.3 Overview5 Chapter 2 The Large-scale Process6 2.1 Blade Parameters8 2.1.1 Blade size8 2.1.2 Blade Section Parameters10 2.1.3 Blade Aerodynamic parameters14 2.2 Nacelle mass magnification15 2.3 Support structure magnification16 Chapter 3 Program Integration18 3.1 Input File Commands21 3.2 The Relationship Between Radius Chord and Rated Power26 3.2.1 Wlarge Program26 3.2.2 Condition and Result28 Chapter 4 Case Study and Result Discussion38 4.1 Structure38 4.2 Design Load Case (DLC)38 4.3 Parameters of Input File47 4.4 Result50 Chapter 5 Conclusions57 References59 Appendix A61 Appendix B62

    [1]千架海陸風力機風力資訊整合平台, http://www.twtpo.org.tw/eng/intro/
    [2]International Electrotechnical Commission (IEC), IEC 61400-3 Ed.1: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines. (2009).
    [3]Morgan, Lackner, Vogel, Baise, Probability distributions for offshore wind speeds, energy conversion and management 52, 15-26,(2011)
    [4]Song, J., Rim, C., Nam, Y., Bae, D., Wind Turbine Simulation Program Development using an Aerodynamics Code and a Multi-Body Dynamics Code, Korea Institute of Machinery and Materials, (2011).
    [5]Gutierrez, J.E., Zamora, B., García, J., Peyrau, M.R., Tool Development Based on FAST for Performing Design Optimization of Offshore Wind Turbines: FASTLognoter, Renewable Energy 55, 69-78, (2013).
    [6]Wang, H., Barthelmie, R.J., Pryor, S.C., Kim, H.G., A new turbulence model for offshore wind turbine standards, Wind Energy, (2014).
    [7]Wang, B., Wang, W.H., Li, X., Li, Y., Research of Semi-Integrated and Fully Coupled Analysis Methods of a Fixed Bottom OWT, ICITMI, (2015).
    [8]Liu, Chen, Kaihutu, Modeling Wind Effects on Shellow Water Waves, Journal of Waterway, Port, Coastal, and Ocean Engineering ,Volume 142 Issue 1, (2016)
    [9]Resor, Definition of a 5MW/61.5m Wind Turbine Blade Reference Model, Sandia National Laboratories, (2013).
    [10]H.J.T. Kooijman, C. Lindenburg, D. Winkelaar, E.L. van der Hooft, Aero-elastic modelling of the DOWEC 6 MWpre-design in PHATAS, DOWEC 6 MWPRE-DESIGN, (2003)
    [11]B. Ernst, H. Schmitt, Seume, Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades, The Science of Making Torque from Wind 2012.
    [12]Cox, Echtermeyer, Structural design and analysis of a 10MW wind turbine blade, SciVerse ScienceDirect, Energy Procedia 24 ( 2012 ) 194 – 201
    [13]C. Desmond, J. Murphy, L. Blonk, W. Haans, Description of an 8 MW reference wind turbine, The Science of Making Torque from Wind (TORQUE 2016)
    [14]Colmenar-Santos, Antonio & Perera-Perez, Javier & Borge-Diez, David & De Palacio, Carlos. (2016). Offshore wind energy: A review of the current status, challenges and future development in Spain. Renewable and Sustainable Energy Reviews
    [15]Kim, T.; Park, J.; Maeng, J. Offshore Wind Farm Site Selection Study around Jeju Island, South Korea. Renewable Energy, 94, 619-628 (2016).
    [16]C. Noyes, C. Qin, E. Loth, Pre-aligned downwind rotor for a 13.2 MW wind turbine, Renewable Energy 116 (2018)
    [17]Wind turbine model, https://en.wind-turbine-models.com/
    [18]Jason M. Jonkman, Marshall L. Buhl Jr. FAST User’s Guide (2005)
    [19]J. Jonkman, S. Butterfield, W. Musial, and G. Scott., Definition of a 5-MW Reference Wind Turbine for Offshore System Development (2009)
    [20]Martin, Lawrence., Wind Energy – The Facts: A Guide to the Technology, Economics and Future of Wind Power. Journal of Cleaner Production (2010)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE