| 研究生: |
謝安 Hsieh, An |
|---|---|
| 論文名稱: |
生醫鈦合金(Ti-7.5Mo)在不同溫度下之高速撞擊特性與微觀組織分析 Dynamic impact properties and microstructural evolution of Ti-7.5Mo biomedical alloy under high strain rate and various temperatures |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 生醫鈦合金 、Ti-7.5Mo 、霍普金森桿 、高溫變形 、高應變速率 、差排 、雙晶 |
| 外文關鍵詞: | Ti-7.5Mo alloy, high temperature deformation, high strain rate, dislocation, twinning |
| 相關次數: | 點閱:107 下載:29 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對Ti-7.5Mo生醫鈦合金在不同溫度及應變速率下之塑性變形特性及微觀結構進行研究。利用霍普金森桿撞擊試驗機分別於溫度25℃、350℃、750℃及應變速率2000 s^-1、3500 s^-1、5500 s^-1下進行撞擊試驗,並透過OM、TEM觀察試件之微觀結構,以探討溫度與應變速率對於巨觀機械性質與微觀結構之影響。
實驗結果顯示Ti-7.5Mo在相同溫度條件下,塑流應力值隨應變速率的上升而增加;而在相同應變速率條件下,其值隨溫度的上升而下降。加工硬化率大致隨溫度或應變速率的提升而下降;應變速率敏感性係數在350℃下、2000 s^-1至3500 s^-1的條件區間有特別高的現象。溫度敏感性係數隨溫度或應變速率上升而增加,惟應變速率2000 s^-1之條件隨溫度上升而下降。本論文最後提出Kobayashi & Dodd model構成方程式來預測Ti-7.5Mo合金在不同溫度及應變速率下之塑性變形情形。
在微觀結構分析中,透過OM觀察可發現:相同溫度下,α″麻田散鐵相隨著應變速率的增加有愈加緊密之趨勢。而TEM觀察中,差排密度隨應變速率的上升而增加,並隨溫度上升而減低;且雙晶間格隨應變速率與溫度的上升而縮小。最後以關係式:〖σ-σ_0=Kρ^(1⁄2)+K〗^' d^(-1)+K^'' ∆^((-1)⁄2),結合微觀及巨觀性質以說明差排密度、差排胞尺寸與雙晶間格對塑流應力值所造成的影響。
In this study, dynamic deformation behavior and microstructural evolution of Ti-7.5Mo biomedical alloy were fully investigated at strain rates of 2000 s^-1, 3500 s^-1, 5500 s^-1 and various temperatures of 25℃, 350℃ and 750℃ by using split-Hopkinson pressure bar. The results indicate that the flow stress and temperature sensitivity increase with increasing strain rate roughly while work hardening rate decrease. Furthermore, it is also found that flow stress and work hardening rate decrease as the temperature increases. It is worth mentioning that work hardening rates of deformed Ti-7.5Mo alloy are remarkably high at a temperature of 350℃ and strain rates of 2000 s^-1 and 3500 s^-1. In contrast, work hardening rate is lower than the other deformed conditions at a temperature of 350℃ and strain rate of 5500s^-1.The Kobayashi & Dodd model is used to describe the plastic deformation behavior of Ti-7.5Mo alloy. The microstructural observations, which include optical microscope images and transmission electron microscope images reveal that the dislocation density, twin spacing and dislocation cell size are also varied with temperature and strain rate. In describing the correlation between mechanical properties and microstructural characteristic of Ti-7.5Mo alloy, a general equation with the form : 〖σ-σ_0=Kρ^(1⁄2)+K〗^' d^(-1)+K^'' ∆^((-1)⁄2) is used.
[1] W. F. Ho, C. P. Ju, and J. H. Chern Lin, “Structure and properties of cast binary Ti-Mo alloys,” Biomaterials, vol. 20, pp. 2115–2122, 1999.
[2] M. A. Meyers, Dynamic behavior of materials, John wiley & Sons, 1994.
[3] S. Bose and A. Bandyopadhyay, Characterization of Biomaterials, Elsevier, 2013.
[4] K. Wang, “The use of titanium for medical applications in the USA,” Materials Science and Engineering: A, Volume 213, pp. 134-137, 1996.
[5] S. Nag and R. Banerjee, “Fundamentals of medical implant materials,” ASM handbook, vol. 23, pp. 6-17, 2012.
[6] M. T. Mohammed, “Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review,” Mater. Metall. Eng., vol. 8, pp. 822-827, 2014.
[7] M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants – A review,” Progress in Materials Science, vol. 54, pp. 397-425, 2009.
[8] M. Long and H. Rack, “Titanium alloys in total joint replacement—a materials science perspective,” Biomaterials, vol. 19, pp. 1621-1639, 1998.
[9] C. W. Lin, C. P. Ju, and J. H. Chern Lin, “A comparison of the fatigue behavior of cast Ti–7.5Mo with c.p. titanium, Ti–6Al–4V and Ti–13Nb–13Zr alloys,” Biomaterials, vol. 26, pp. 2899–2907, 2004.
[10] J. R. P. Jorge, V. A. Barao, J. A. Delben, L. P. Faverani, T. P. Queiroz and W. G. Assuncao, “Titanium in Dentistry: Historical Development , State of the Art and Future Perspectives,” J Indian Prosthodont Soc, vol. 13, pp. 71-77, 2013.
[11] C. Layens and M. Peters, “Titanium and titanium alloys: fundamentals and applications,” ed: Wiley-VCH, 2003.
[12] M. J. Donachie, Titanium: a technical guide, ASM international, 2000.
[13] L. A. Matlakhova, A. N. Matlakhov, S. N. Monteiro, S. G. Fedotov, and B. A. Goncharenko, “Properties and structural characteristics of Ti–Nb–Al alloys,” Materials Science and Engineering: A, vol. 393, pp.320-326, 2005.
[14] B. S. Hickman, “The Formation of Omega Phase in Titanium and Zirconium Alloys: A Review,” Journal of Materials Science, vol. 4, pp. 554-563, 1969.
[15] A. Choubey, R. Balasubramaniam, B. Basu, “Effect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti–6Al–4V in simulated physiological environment,” Journal of Alloys and Compounds, vol. 381, pp. 288-294, 2004.
[16] K. Bordji, J. Y. Jouzeau, D. Mainard, E. Payan, P. Netter, K. T. Rie, T. Stucky, and M. Hage-Ali, “Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts,” Biomaterials, vol. 17, pp. 929-940, 1996.
[17] F. Y. Zhou, K. J. Qiu, H. F. Li, T. Huang, B. L. Wang, L. Li, and Y. F. Zheng, “Screening on binary Zr–1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility,” Acta Biomaterialia, vol. 9, pp. 9578-9587, 2013.
[18] X. Ji, S. Emura, T. W. Liu, K. Suzuta, X. H. Min, and K. Tsuchiya, “Effect of oxygen addition on microstructures and mechanical properties of Ti-7.5Mo alloy,” Journal of Alloys and Compounds, vol. 737, pp. 221-229, 2018.
[19] L. N. Guseva, I. V. Egiz, “Metastable diagram of high-purity Ti--Mo alloys,” Met. Sci. Heat Treat., vol. 16, no. 3-4, pp. 355-356, 1974.
[20] X. Ji, I. Gutierrez-Urrutia, S. Emura, T. W. Liu, T. Hara, X. H. Min, D. Ping, and K. Tsuchiya, “Twinning behavior of orthorhombic-α” martensite in a Ti-7.5Mo alloy,” Science and Technology of Advanced Materials, vol. 20, no. 1, pp. 401-411, 2019.
[21] D. J. Lin, J. H. Chern Lin, C. P. Ju, “Effect of omega phase on deformation behavior of Ti–7.5Mo–xFe alloys,” Materials Chemistry and Physics, vol. 76, pp. 191-197, 2002.
[22] G. L. Wulf, “The high strain rate compression of 1023 and 4130 steels,” International Journal of Mechanical Sciences, vol. 20, pp. 843-848, 1978.
[23] L. Remy, “Kinetics of f.c.c. deformation twinning and its relationship to stress-strain behaviour,” Acta Metallurgica, vol. 26, pp. 443-451, 1978.
[24] D. Klahn, A. Mukherjee and J. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, vol. 3, ASM, pp. 951, 1970.
[25] J. Campbell and W. Ferguson, “The temperature and strain-rate dependence of the shear strength of mild steel,” Philosophical Magazine, vol. 21, no. 169, pp. 63-82, 1970.
[26] G. E. Dieter and D. Bacon, Mechanical metallurgy. McGraw-Hill New York, 1986.
[27] H. Conrad, “Thermal activated deformation of metals,” JOM, vol 16, pp. 582-588, 1964.
[28] L. Shi and D. Northwood, “The mechanical behavior of an AISI type 310 stainless steel,” Acta metallurgica et materialia, vol 43, pp. 453-460, 1995.
[29] U. S. Lindholm, “High strain-rate tests,” Measurement of Mechanical properties, vol. 5, pp. 199-217, 1971.
[30] J. Achenbach, Wave propagation in elastic solids. Elsevier, 2012.
[31] B. Dodd, “Adiabatic shear localization: occurrence, theories, and applications,” Pergamon Press, 1992.
[32] W. S. Lee and C. F. Lin, “Plastic deformation and fracture behavior of Ti–6Al–4V alloy loaded with high strain rate under various temperatures,” Materials Science and Engineering: A, vol. 241, no. 1, pp. 48-59, 1998.
[33] P. Ludwik, “Elements der Technologischen Mechanik Julius Springer,” Berlin, Germany, 1909.
[34] Z. Gronostajski, “The constitutive equation for FEM analysis,” Journal of Materials Processing Technology, vol. 106, pp. 40-44, 2000.
[35] D. Umbrello, R. M'saoubi, and J. Outeiro, “The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel,” International Journal of Machine Tools and Manufacture, vol. 47, pp. 462-470, 2007.
[36] L. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger, and K. Staudhammer, “A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study,” Journal of Materials Processing Technology, vol. 182, pp. 319-326, 2007.
[37] G. R. Johnson and W. H. Cook, “A constitutive model and data for metals subjected to large strains, high strain rate and high temperatures,” in Proceeding of the 7th International Symposium in Ballistics, pp. 541-547, 1983.
[38] U. Andrade, M. Meters, and A. Chokshi, “Constitutive description of work and shock-hardened copper,” Scripta metallurgica et materialia, vol. 20, pp. 933-938, 1994.
[39] F. J. Zerilli and R. W. Armstrong, “The effect of dislocation drag on the stress-strain behavior of FCC metals,” Acta Metallurgica et Materialia, vol. 40, pp. 1803-1808, 1992.
[40] F. J. Zerilli and R. W. Armstrong, “Dislocation‐mechanics‐based constitutive relations for material dynamics calculations,” Journal of Applied Physics, vol. 61, pp. 1816-1825, 1987.
[41] X. Wang, K. Chandrashekhara, S. A. Rummel, S. Lekakh, D. C. Vanaken, and R. J. O’Malley, “Modeling of mass flaw behavior of hot rolled low alloy steel based on combined Johnson-Cook and Zerilli-Armstrong model,” Journal of Materials Science, vol. 52, no. 5, pp. 2800-2815, 2017.
[42] H. Kobayashi, B. Dodd, “A numerical analysis for the formation of adiabatic shear bands including void nucleation and growth,” International Journal of Impact Engineering, vol. 8, pp. 1-13, 1989.
[43] C. C. Chung, J. W. Lee, C. P. Ju, and J. H. Chern Lin, “Effect of Solution Treatment Time on Structure and Mechanical Properties of Fast-Cooled Ti–7.5Mo Alloy,” Advanced Engineering Materials, vol. 16, pp. 376-380, 2014.
[44] F. F. Cardoso, P. L. Ferrandini, E. S. N. Lopes, A. Cremasco, and R. Caram, “Ti–Mo alloys employed as biomaterials: Effects of composition and aging heat treatment on microstructure and mechanical behavior,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 32, pp. 31-38, 2014.
[45] S. Esmaeili, L. Cheng, A. Deschamps, D. Lloyd, and W. Poole, “The deformation behavior of AA6111 as a function of temperature and precipitation state,” Materials Science and Engineering: A, vol. 319, pp. 461-465, 2001.
[46] B. Viguier, “Dislocation densities and strain hardening rate in some intermetallic compounds,” Materials Science and Engineering: A, vol. 349, no. 1-2, pp. 132-135, 2003.
[47] D. Chu and J. Morris, “The influence of microstructure on work hardening in aluminum,” Acta materialia, vol. 44, no. 7, pp. 2599-2610, 1996.
[48] J. H. Gao, Y. H. Huang, D. K. Guan, A. J. Knowles, L. Ma, D. Dye, W. M. Rainforth, “Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate,” Acta Materialia, vol. 152, pp. 301-314, 2018.
[49] C. Zener and J. Hollomon, “Effect of strain rate upon plastic flow of steel,” Journal of Applied physics, vol. 15, no. 1, pp. 22-32, 1944.
[50] A. J. Prabha, S. Raju, B. Jeyaganesh, A. K. Rai, M. Behera, M. Vijayalakshmi, “Thermodynamics of α″→β phase transformation and heat capacity measurements in Ti–15at% Nb alloy,” Physica B: Condensed Matter, vol. 406, pp. 4200-4209, 2011.
[51] R. Ham, “The determination of dislocation densities in thin films,” Philosophical Magazine, vol. 6, pp. 1183-1184, 1961.
[52] Y. Tomota, P. Lukas, S. Harjo, J. H. Park, N. Tsuchida, and D. Neov, “In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation,” Acta Materialia, vol. 51, pp. 819-830, 2003.
[53] L. E. Murr, E. Moin, K. Wongwiwat, and F. Greulich, “Effect of Grain Size and Deformation-induced Grain Refinement on the Residual Strength of Shock-loaded Metals and Alloys,” Strength of Metals and Alloys, vol. 2, pp. 801-806, 1979.
[54] F. Greulich, L. E. Murr, “Effect of Grain size, dislocation cell size and deformation twin spacing on the residual strengthening of shock-loaded nickel,” Materials Science and Engineering, vol. 39, pp. 81-93, 1979.
[55] A. Rohatgi, K. S. Vecchio, and G T. Gray III, “The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery,” Metallurgical and Materials Transactions A, vol. 32, pp. 135-145, 2001.
[56] S. Semiatin and T. Bieler, “The effect of alpha platelet thickness on plastic flow during hot working of Ti–6Al–4V with a transformed microstructure,” Acta Materialia, vol. 49, pp. 3565-3573, 2001.