| 研究生: |
林俊鈺 Lin, Chun-Yu |
|---|---|
| 論文名稱: |
Lorentz不變性在量子資訊及黑洞度規的應用 Lorentz invariance applied to Quantum Information Science, and to the construction of black hole metrics |
| 指導教授: |
許祖斌
Soo, Chopin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 外文關鍵詞: | event horizons, Wigner transforms, fundamental e-bits and Bell states, Hawking radiation, reduced density matrices, Newton-Wigner localization, Lorentz invariance, Parikh-Wilczek method, von Neumann entropy, Wigner rotation, bundle reduction, Generalized Painlevé-Gullstrand metrics |
| 相關次數: | 點閱:74 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This thesis is a study of Lorentz invariance in two different contexts.
In the absence of gravitation and spacetime curvature, the isometry group of Minkowski spacetime is the inhomogeneous Lorentz group. Quantum Information Science is analyzed in the context of quantum field theory which is fully compatible with the principles of quantum mechanics and special relativity. We compute, for massive particles, the explicit Wigner rotations of one-particle states for arbitrary Lorentz transformations; and the explicit Hermitian generators of the infinite-dimensional unitary representation. For a pair of spin-1/2 particles, Einstein-Podolsky-Rosen-Bell entangled states and their behavior under the Lorentz group are analyzed in the context of quantum field theory. Group theoretical considerations suggest a convenient definition of the Bell states which is slightly different from the conventional assignment. The behavior of Bell states under arbitrary Lorentz transformations can then be described succinctly.
In curved spacetimes, Lorentz symmetry is manifested as the local gauge symmetry of the freedom to choose at each spacetime point the local Lorentz frame of the tangent space which is isomorphic to Minkowski spacetime. The invariance of the curved spacetime metric under local Lorentz transformations of the vierbein one-forms is made use of to construct black hole metrics which are regular at the horizon(s). An obstruction to the implementation of spatially flat Painlevé-Gullstrand(PG) slicings is demonstrated, and explicitly discussed for Reissner-Nordström and Schwarzschild-anti-deSitter spacetimes. Generalizations of PG slicings which are not spatially flat but which remain regular at the horizons are introduced. These metrics can be obtained from standard spherically symmetric metrics by physical Lorentz boosts. Generalized PG coordinates for stationary axisymmetric spacetimes are also explicitly constructed; and the results are applied to the Kerr-Newman family of rotating black hole solutions. Our generalizations are free of coordinate singularities at the horizon(s).
ABCK98 Ashtekar A, Baez J, Corichi A and Krasnov K 1998 Quantum geometry and black hole entropy Phys. Rev. Lett. 80 904 [gr-qc/9710007] 5
ABF99 Ashtekar A, Beetle C and Fairhurst S 1999 Isolated horizons: A generalization of black hole mechanics Class. Quant. Grav. 16 L1 [gr-qc/9812065] 5
AK04 Ashtekar A and Krishnan B 2004 Isolated and dynamical horizons and their applications Living Rev. Rel. 7 10 [gr-qc/0407042] 5
ALMH03 Ahn D, Lee H j, Moon Y H and Hwang S W 2003 Relativistic entanglement and Bell's inequality Phys. Rev. A67 012103 2, 12
AM02 Alsing P M and Milburn G J 2002 Lorentz invariance of entanglement Quant. Inf. Comp. 2 487 [quant-ph/0203051] 2, 12
AM03 Alsing P M and Milburn G J 2003 Teleportation with a uniformly accelerated partner Phys. Rev. Lett. 91 180404 [quant-ph/0302179] 2
Bar95 Barbero J F 1995 Real Ashtekar variables for Lorentzian signature space times Phys. Rev. D51 5507 [gr-qc/9410014] 34
BBC+93 Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels Phys. Rev. Lett. 70 1895 2
BDSW96 Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Mixed State Entanglement and Quantum Error Correction Phys. Rev. A54 3824 [quant-ph/9604024] 10
Bel88 Bell J S 1988 Speakable and unspeakable in quantum mechanics (Cambridge University Press) 42
Ber00 Bertlmann R A 2000 Anomalies in quantum field theory (New York: Oxford University Press) 35
BK05 Baskal S and Kim Y S 2005 Rotations associated with Lorentz boosts J. Phys. A 38 6545 [math-ph/0401032] 35
BS05 Bojowald M and Swiderski R 2005 Spherically symmetric quantum horizons Phys. Rev. D71 081501 [gr-qc/0410147] 5
BS07 Beig R and Siddiqui A A 2007 Uniqueness of flat spherically symmetric spacelike hypersurfaces admitted by spherically symmetric static spacetimes Class. Quant. Grav. 24 5435 3
BW92 Bennett C H and Wiesner S J 1992 Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states Phys. Rev. Lett. 69 2881 2
Car68 Carter B 1968 Hamilton-Jacobi and Schrödinger separable solutions of Einstein's equations Commun. Math. Phys. 10 280 27
Car73 Carter B 1973 Black hole equilibrium states in C DeWitt and B S DeWitt, eds, Black holes: Les Astres Occlus (Gordon and Breach Science Publishers) pp 57–214 26, 27
CF72 Chandrasekhar S and Friedman J L 1972 On the stability of axisymmetric systems to axisymmetric perturbations in general relativity, I. The equations governing nonstationary, and perturbed systems Astrophys. J 175 379 25
Cha92 Chandrasekar S 1992 The mathematical theory of black holes (Oxford University Press) 25, 31, 46
Cir80 Cirelson B S 1980 Quantum generalizations of Bell's inequality Lett. Math. Phys. 4 93 42
CW03 Czachor M and Wilczewski M 2003 Relativistic BB84, relativistic errors, and how to correct them Phys. Rev. A68 010302 [quant-ph/0303077] 2
Cza97 Czachor M 1997 Einstein-Podolsky-Rosen-Bohm experiment with relativistic massive particles Phys. Rev. A55 72 [quant-ph/9609022] 2, 9
DC76a Dowker J S and Critchley R 1976 Effective Lagrangian and energy momentum tensor in de Sitter space Phys. Rev. D13 3224 16
DC76b Dowker J S and Critchley R 1976 Scalar effective Lagrangian in de Sitter space Phys. Rev. D13 224 16
DC77 Dowker J S and Critchley R 1977 The stress tensor conformal anomaly for scalar and spinor fields Phys. Rev. D16 3390 16
Dor00 Doran C 2000 A new form of the Kerr solution Phys. Rev. D61 067503 [gr-qc/9910099] 4, 29, 47
Eke91 Ekert A K 1991 Quantum cryptography based on Bell's theorem Phys. Rev. Lett. 67 661 2
End97 Enderlein J 1997 A heuristic way of obtaining the Kerr metric Amer. J. Phys. 65 897 27
ERTMP92 Ekert A K, Rarity J G, Tapster P R and Massimo Palma G 1992 Practical quantum cryptography based on two-photon interferometry Phys. Rev. Lett. 69 1293 2
ESBL02 Eckert K, Schliemann J, Bruss D and Lewenstein M 2002 Quantum correlations in systems of indistinguishable particles Annals of Physics 299 88 [quant-ph/0203060] 3
GA02 Gingrich R M and Adami C 2002 Quantum Entanglement of Moving Bodies Phys. Rev. Lett. 89 270402 [quant-ph/0205179] 2
GH77 Gibbons G W and Hawking S W 1977 Cosmological event horizons, thermodynamics, and particle creation Phys. Rev. D15 2738 26
Gib77 Gibbons G W 1977 Thermal zeta functions Phys. Lett. A60 385 16
GLM01 Giovannetti V, Lloyd S and Maccone L 2001 Quantum-enhanced positioning and clock synchronization Nature 412 417 [quant-ph/0103006] 2
GO99 Guven J and O'Murchadha N 1999 Flat foliations of spherically symmetric geometries Phys. Rev. D60 104015 [gr-qc/9905014] 3
Gul22 Gullstrand A 1922 Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie Arkiv. Mat. Astron. Fys. 16 1 3
Hal68 Halpern F R 1968 Special relativity and quantum mechanics (Englewood Cliffs, NJ: Prentice-Hall) 38
Haw75 Hawking S W 1975 Particle creation by black holes Commun. Math. Phys. 43 199 23
Haw77 Hawking SW1977 Zeta function regularization of path integrals in curved space-time Commun. Math. Phys. 55 133 16
Hay94 Hayward S A 1994 General laws of black hole dynamics Phys. Rev. D49 6467 31
HE73 Hawking S W and Ellis G F R 1973 The large scale structure of space-time (Cambridge: Cambridge University Press) 20, 31, 46
HKV01 Hemming S and Keski-Vakkuri E 2001 Hawking radiation from AdS black holes Phys. Rev. D64 044006 [gr-qc/0005115] 21, 23
HL08 Hamilton A J S and Lisle J P 2008 The river model of black holes Amer. J. Phys. 76 519 [gr-qc/0411060] 3, 21, 35
HOSW84 Hillery M, O'Connell R F, Scully M O and Wigner E P 1984 Distribution functions in physics: Fundamentals Physics Reports 106 121 39, 40
HQS02 Husain V, Qadir A and Siddiqui A A 2002 Note on flat foliations of spherically symmetric spacetimes Phys. Rev. D65 027501 [gr-qc/0110068] 3
HV02 Huhtala P and Volovik G E 2002 Fermionic microstates within Painlevé-Gullstrand black hole J. Exp. Theor. Phys. 94 853 [gr-qc/0111055] 4
HW97 Hill S and WoottersW K 1997 Entanglement of a Pair of Quantum Bits Phys. Rev. Lett. 78 5022 [quant-ph/9703041] 10
HW05 Husain V and Winkler O 2005 Flat slice Hamiltonian formalism for dynamical black holes Phys. Rev. D71 104001 [gr-qc/0503031] 3
JADW00 Jozsa R, Abrams D S, Dowling J P and Williams C P 2000 Quantum clock synchronization based on shared prior entanglement Phys. Rev. Lett. 85 2010 [quant-ph/0004105] 2
JS09 Jacobson T and Soong Y A 2009 Slices of the Kerr ergosurface Class. Quant. Grav. 26 055014 [0809.2369] 4
JWC06 Jiang Q Q, Wu S Q and Cai X 2006 Hawking radiation as tunneling from the Kerr and Kerr- Newman black holes Phys. Rev. D73 064003 [hep-th/0512351] 4
Ker63 Kerr R P 1963 Gravitational field of a spinning mass as an example of algebraically special metrics Phys. Rev. Lett. 11 237 4, 46
KN63 Kobayashi S and Nomizu K 1963 Foundations of differential geometry, Vol. I (New York: Interscience Publishers) 33
Kod92 Kodama H 1992 Quantum gravity by the complex canonical formulation Int. J. Mod. Phys. D1 439 [gr-qc/9211022] 33
LDPC05 Lasenby A, Doran C, Pritchard J and Caceres A 2005 Bound states and decay times of fermions in a Schwarzschild black hole background Phys. Rev. D72 105014 [gr-qc/0209090] 4
LMN00 Laiho R, Molotkov S N and Nazin S S 2000 Teleportation of the relativistic quantum field Phys. Lett. A275 36 [quant-ph/0005067] 2
LS09 Lin C Y and Soo C 2009 Generalized Painlevé-Gullstrand metrics Phys. Lett. B671 493 [0810.2161] 19, 29, 30
Med02 Medved A J M 2002 Radiation via tunneling from a de Sitter cosmological horizon Phys. Rev. D66 124009 [hep-th/0207247] 21
MP01 Martel K and Poisson E 2001 Regular coordinate systems for Schwarzschild and other spherical spacetimes Amer. J. Phys. 69 476 [gr-qc/0001069] 3, 20
MTW73 Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (San Francisco: W. H. Freeman) 20, 21
MUFdRN06 Maluf J W, Ulhoa S C, Faria F F and da Rocha-Neto J F 2006 The angular momentum of the gravitational field and the Poincaré group Class. Quant. Grav. 23 6245 [gr-qc/0609018] 4
Muk07 Mukhopadhyay B 2007 Gravity induced neutrino antineutrino oscillation: CPT and lepton number non-conservation under gravity Class. Quant. Grav. 24 1433 [gr-qc/0702062] 4
Nat08 Natário J 2008 Painlevé-Gullstrand coordinates for the Kerr solution Gen. Rel. Grav. online [0805.0206] 30
NC00 Nielsen M A and Chuang I L 2000 Quantum computation and quantum information (United Kingdom: Cambridge University Press) 10, 42
NCC+65 Newman E T, Couch E, Chinnapared K, Exton A, Prakash A and Torrence R 1965 Metric of a rotating, charged mass J. Math. Phys. 6 918 4
NW49 Newton T D and Wigner E P 1949 Localized states for elementary systems Rev. Mod. Phys. 21 400 41, 42, 43
Ohn88 Ohnuki Y 1988 Unitary representations of the Poincaré group and relativistic wave equations (Singapore: World Scientific) 2, 7, 9
OW84 O'Connell R F and Wigner E P 1984 Manifestations of Bose and Fermi statistics on the quantum distribution function for systems of spin-0 and spin-1/2 particles Phys. Rev. A30 2613 39
Pai21 Painlevé P 1921 La mécanique classique et la théorie de la relativité C. R. Acad. Sci. (Paris) 173 677 3
Par02 Parikh M K 2002 New coordinates for de Sitter space and de Sitter radiation Phys. Lett. B546 189 [hep-th/0204107] 21, 22
PO56 Penrose O and Onsager L 1956 Bose-Einstein condensation and liquid helium Phys. Rev. 104 576 3, 13, 14
Poi04 Poisson E 2004 A relativist's toolkit: the mathematics of black-hole mechanics (Cambridge University Press) 27, 46
Pok00 Pokorski S 2000 Gauge field theories (Cambridge University Press) 40
PS03 Pachos J and Solano E 2003 Generation and degree of entanglement in a relativistic formulation Quant. Inf. Comp. 3 115 [quant-ph/0203065] 2
PST02 Peres A, Scudo P F and Terno D R 2002 Quantum entropy and special relativity Phys. Rev. Lett. 88 230402 [quant-ph/0203033] 2, 18
PT04 Peres A and Terno D R 2004 Quantum information and relativity theory Rev. Mod. Phys. 76 93 [quant-ph/0212023] 2
PW00 Parikh M K and Wilczek F 2000 Hawking radiation as tunneling Phys. Rev. Lett. 85 5042 [hep-th/9907001] 3, 4, 21, 22, 23
PY01 Paškauskas R and You L 2001 Quantum correlations in two-boson wave functions Phys. Rev. A64 042310 [quant-ph/0106117] 3, 14, 15
QS06 Qadir A and Siddiqui A A 2006 Foliation of the Schwarzschild and Reissner-Nordström space-times by flat space-like hypersurfaces Int. J. Mod. Phys. D15 1419 21
Ren09 Ren J 2009 Tunneling effect of two horizons from a Reissner-Nordström black hole Int. J. Theor. Phys. 48 431 23
RS02 Rembielinski J and Smolinski K A 2002 Einstein-Podolsky-Rosen correlations of spin measurements in two moving inertial frames Phys. Rev. A66 052114 [quant-ph/0204155] 2
SCK+01 Schliemann J, Cirac J I, Kus M, Lewenstein M and Loss D 2001 Quantum correlations in two-fermion systems Phys. Rev. A64 022303 [quant-ph/0012094] 3, 14, 15
Shi03 Shi Y 2003 Quantum entanglement of identical particles Phys. Rev. A67 024301 3
SL04 Soo C and Lin C Y 2004 Wigner rotations, Bell states, and Lorentz invariance of entanglement and von Neumann entropy Int. J. Quantum .Info. 2 183 [quant-ph/0307107] 6, 35
Soo01 Soo C 2001 Einstein manifolds, Abelian instantons, bundle reduction, and the cosmological constant Class. Quant. Grav. 18 709 [gr-qc/0009007] 33
Ter03 Terno D R 2003 Two roles of relativistic spin operators Phys. Rev. A67 014102 [quant-ph/0208074] 9
tH74't Hooft G 1974 Magnetic monopoles in unified gauge theories Nucl. Phys. B79 276 33
TU03 Terashima H and Ueda M 2003 Relativistic Einstein-Podolsky-Rosen correlation and Bell's inequality Int. J. Quantum Info. 1 93 [quant-ph/0211177] 2, 12
TU04 Terashima H and Ueda M 2004 Einstein-Podolsky-Rosen correlation in gravitational field Phys. Rev. A69 032113 [quant-ph/0307114] 2
Vai99 Vaidya P C 1999 The gravitational field of a radiating star Gen. Rel. Grav. 31 121 32
VK04 Valiente Kroon J A 2004 On the nonexistence of conformally flat slices in the Kerr and other stationary
spacetimes Phys. Rev. Lett. 92 041101 [gr-qc/0310048] 30
Wei72 Weinberg S 1972 Gravitation and cosmology: Principles and applications of the general theory of relativity (Wiley) 19
Wei95 Weinberg S 1995 The Quantum Theory of Fields. Vol.I (United Kingdom: Cambridge University Press) 2, 3, 6, 44
Wig32 Wigner E P 1932 On the quantum correction for thermodynamic equilibrium Phys. Rev. 40 749 39
Wig39 Wigner E P 1939 On unitary representations of the inhomogeneous Lorentz group Annals Math. 40 149 1, 2
Wu05 Wu C L 2005 Wigner transforms and analysis of entanglement Master's thesis National Cheng Kung University, Taiwan 42
Yan62 Yang C N 1962 Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors Rev. Mod. Phys. 34 694 3, 13, 14
Yor71 York JW1971 Gravitational degrees of freedom and the initial-value problem Phys. Rev. Lett. 26 1656 30
Zou07 Zou S J 2007 Hawking radiation as tunneling of self-gravitating shell Master's thesis National Central University, Taiwan 22
Zur91 Zurek W H 1991 Decoherence and the transition from quantum to classical Physics Today 44(10) 36 [quant-ph/0306072] 39
ZZ05 Zhang J Y and Zhao Z 2005 New coordinates for Kerr-Newman black hole radiation Phys. Lett. B618 14 30