簡易檢索 / 詳目顯示

研究生: 陳俠儒
Chen, Shia-Ru
論文名稱: 非線性造波研究
The Study of Linear and Nonlinear Waves Generation
指導教授: 唐啟釗
Tang, Chii-Jau
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 83
中文關鍵詞: 造波格網系統流函數
外文關鍵詞: stream function, grid system, wave maker
相關次數: 點閱:154下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    本文主要發展數值模擬不同造波機制之模式,藉以探討波浪生成與傳遞過程波形之演變及達穩定週期時的液面波傳變化及內部流場的運動特性。文中提出一個結合兩特定位置向量的組合曲線格網系統,用以瞬時貼合流場變動邊界。由此座標系統之微分幾何關係可計算貼壁座標系統幾何參數。文中以流函數為流場變數,並將Laplace方程式轉換至此曲線系統作為內部流場的控制方程式,搭配具有較大安定性、物理意義與更精確的有限解析法(Finite Analytic Method)來離散此控制方程式。同時,亦由有限差分法(Finite Difference Method)離散完全的自由液面邊界條件,與大幅度變位造波板條件。這些條件將由上述之瞬時貼壁座標系統直接在轉換之計算域上進行計算,再將所得結果對應回物理域上。本文經由數值疊代計算去獲得每個時階這些非線性聯立方程式的時階精確解。

    數值造波的波形模擬結果,不但符合數值精度與效率且與近似理論解之結果及實驗量測有一致性。本模式經此驗證與比較長波與短波兩種波浪理論後,證明本模式適用於模擬一般自由液面問題。利用此組合動態座標系統與本文所用之數值處理方法可更方便於處理移動邊界之問題。而可延伸探討其他相關移動邊界之物理問題。

    Abstract

    In the thesis, I use a numerical model to simulate the wave generated by various types of wave maker and analyze the transient characteristics for the evolution of these waves to the quasi-steady waveform during propagation. A numerical hybrid grid system is obtained by combining two specific position vectors to construct the boundary-conforming, time-evolving, curvilinear coordinates over the fluid domain of interest. Using this coordinate system one can easily determine geometric coefficients from differential geometric relationship. The transformed Laplace equation in this grid system is then utilized to formulate the flow motion through the calculation of stream function in the numerical domain. The finite analytic discretization method applied to the present free-surface problem has the advantage of greater numerical stability, more physical sense and better accuracy over other discretization methods, e.g., the finite difference or finite element methods. Meanwhile, the complete free-surface boundary conditions and the large-displacement wave plate condition are specified and treated by using finite difference scheme on the moving boundary. Nonlinear coupling in the governing equation and these associated boundary conditions is therefore necessarily taken care by means of iterative procedure to seek the time-accurate solution at each time step.

    The numerical result calculated by this wave model shows not only accurate and efficient solution but also measurements and other approximate analyses. I validated the simulated result in comparison with both short-wave and long-wave theories. It is concluded that the suggest numerical model developed in the present study has good capability to treat the general free-surface problems in all. The transient boundary-fitted grid system and associated numerical techniques enable one to treat those with boundary in deformable motion and will also give a reasonable extension to the application of other moving-boundary problems.

    目錄 中文摘要....................................I 英文摘要....................................Ⅱ 誌謝....................................... Ⅳ 目錄........................................Ⅴ 圖目錄......................................Ⅶ 表目錄..................................... IX 符號說明.....................................X 第一章 緒論....................................................1 1.1 前言.............................................1 1.2 本文概述.........................................3 第二章 流場方程式......................................5 2.1 代數向量組合格網生成法...........................6 2.2 控制方程式.......................................8 2.3 初始條件與邊界條件...............................9 第三章 數值方法.......................................13 3.1 格網生成........................................13 3.2 有限解析法離散內部流場方程式....................14 3.3 有限差分法離散自由液面邊界條件..................17 3.3.1 自由液面動力邊界條件之離散處理..............17 3.3.2 自由液面運動邊界條件之離散處理..............18 3.4 計算流程........................................19 第四章 計算結果與討論.................................23 4.1 造波板穩定週期運動..............................23 4.1.1 格網分析....................................24 4.1.2 造波在第一週期內之質量守恆..................30 4.1.3 初始造波之水位瞬時變化與理論解之比較........32 4.1.4 達穩定之波形與線性理論解之比較..............42 4.2 造波板非穩定發展運動............................53 4.2.1 週期波造波實驗與模式計算結果比較............53 4.2.2 實驗造孤立波結果與模式計算比對..............63 第五章 結論與建議.....................................70 5.1 結論..........................................70 5.2 建議..........................................71 參考文獻...............................................73 附錄A 座標轉換........................................75 附錄B 曲線座標之FSDC推導..............................77 附錄C 曲線座標之FSKC推導..............................83

    參考文獻

    張志華(1997),「孤立波與結構物在黏性流體中互制作用之研究」,博士論文,國立成功大學水利暨海洋工程研究所,台南。

    黃煌煇、江文山、唐啟釗(2001) "二維渠道中考慮流體黏滯性之瞬變造波模擬",中國土木水利工程學刊,第十三卷,第三期,第585-592頁。

    Boussinesq M.J. (1872), "Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans un canal des vitesses sensiblement pareilles de la surface au fond", J. Math. Pure et Appl., 2(17), p 55-108.

    Chen, C. J., Chen, H. C. (1982), "The Finite Analytic Method", IIHR Report 232-IV, IOWA Institute of Hydraulic Research, The Univserity of IOWA

    C.W. Hirt, B.D. Nicholas (1981), "Volume of fluid method for the dynamics of free boundaries", J. Comput. Phys. 39 201.

    Dean, R. G., and Dalrymple, R. A. (1984), "Water wave mechanics for engineers and scientists", Prentice-Hall, Englewood Cliffs, N.J.

    Flick, R. E., and Guza, R. T. (1980), "Paddle generated waves in aboratory channels", J. Waterw. Port, Coastal Ocean Div., Am. Soc. Civ.Eng., 06(1), 79–97.

    F.H. Halow, J.E. Welch (1965), "Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface", Phys. Fluids 12 2182.

    GALVIN, C.J., Jr. (1964), "Wave-Height Prediction for Wave Generation in Shallow Water", J.Tech. Memo 4, U.S.Army, Costal Engineering Research Center, Mar.

    Goring, D., and Raichlen, F. (1980), "The generation of long waves in the laboratory", Proc., 17th Coastal Eng. Conf., ASCE, New York, 763–783.
    Havelock, T. H. (1929), "Forced surface wave on water", Philos. ag.,7(8),569–576.

    Hudspeth, R. T., Leonard, J. W., and Chen, M. C. (1981), "Design curves for hinged wavemakers: Experiments", J. Hydraul. Div., Am. Soc. Civ. Eng., 107(5), 553–574.
    Hughes, S. A. (1993), "Physical models and laboratory techniques in coastal engineering, Chap. 7", World Scientific, Singapore.

    Korteweg D.J. and De Vries G. (1895), "On the change of form of long waves advancing in a rectangular canal, and on a new type of stationary waves", Phil. Mag., 39(5), p 422-443.

    Lamb, H. (1932), Hydrodynamics, Dover, New York.

    Lee, J-F., Kuo, J-R., and Lee, C-P., "Transient wavemaker theory", Journal of Hydraulic Research, Vol. 27, No. 5, pp. 651–663 (1989)

    Lee, J F.(1991). "Theoretical analysis of wave generation by piston-type wavemaker", J.Harb. Technol., 6,23-40.

    Stoker, J. J. (1968), Water Waves, Wiley Interscience Publishers, New York.

    Stokes, G. G. (1847), "On the theory of oscillatory waves", Transaction Cambridge Philosophical Society, Vol. 8, pp. 441-445.

    Svendsen, I. A. (1985). "Physical modeling of water waves", Physical modeling in coastal engineering, R. A. Dalrymple, ed., Balkema, Rotterdam,The Netherlands, 13–47.

    Sverdrup, H.V. and W.H. Munk (1947), "Wind, Sea and Swell: Theory of Relations for Forecasting", H.O. Pub. No. 601, Washington.

    Thompson, J. F., Z. U. A. Warsi, C. Wayne Mastin (1985), Numerical Grid Generation Foundations and Applications.

    Ursell, F., Dean, R. G., and Yu, Y. S. (1960), "Forced small-amplitude water waves: A comparison of theory and experiment", J. Fluid Mech., 7, 32–53.

    Yang, S. A. and A. T. Chwang (1992), "About the Moving Contact Line", Journal of Engineering Mechanics, Vol. 118(4), pp. 735-745.

    下載圖示 校內:立即公開
    校外:2006-08-25公開
    QR CODE