簡易檢索 / 詳目顯示

研究生: 張頌彥
Chang, Sung-Yen
論文名稱: 應用多感測器偵測跌倒之研究
Study on Fall-detection Using Multiple Sensors
指導教授: 黃悅民
Huang, Yueh-Min
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 68
中文關鍵詞: 跌倒偵測加速度計跌倒重現
外文關鍵詞: Fall detection, G-sensor, Fall reconstruction
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著醫學藥物的進步,世界各地的平均年齡也慢慢地增長,銀髮族的人口也逐漸增加。無所不在的健康照護(Ubiquitous Healthcare, U-Health)在未來將成為不可或缺的需求。無所不在的健康照護主要是提供任何人、任何地點以及任何時間能接受醫療服務。本研究主要是針對老人意外跌倒,提供無所不在緊急醫療措施。利用多個三軸加速度與陀螺儀感測器協同偵測身體行為與意外跌倒事件的發生。當跌倒意外發生時,分布於身體各部位的短距離無線感測器(ZigBee)將傳送其重力加速度資訊給手持式裝置,由於人體運動會依據個人習慣而呈現群聚性,利用此群聚的特性,以減法聚類法對此軌跡點作群聚處理,進行分析判斷跌倒意外的發生,並在跌倒時能夠立即發出警告,再跌倒意外發生後,利用運動學公式計算人體骨架的運動,在後端電腦上處理重現跌倒姿勢,之後並把跌倒資訊傳送回醫療中心,讓醫療人員能夠做更精準的醫療判斷。

    As a result of medical advances, the average age around the world continues to rise, so that the elderly population is also increasing rapidly. Ubiquitous healthcare will become an integral part of future demand. Ubiquitous Healthcare means providing medical services for anyone, anywhere and anytime. This study mainly focuses on accidental falls on the part of the elderly, and involves providing ubiquitous emergency medical measures, using multiple tri-axis acceleration and gyroscope sensors to explore the collaborative detection of body behavior modes and accidental falling incidents. When falling accidents occur, Short-range wireless sensors (ZigBee) located in various parts of the body will send the acceleration information to a mobile device. The human motion will present clustering according to personal habits, by calculating the kinematic locus of the body with acceleration sensors. According to the characteristic of clustering, detecting fall-down accidents by the clustering kinematic locus of the body employs the subtractive clustering method. When a fall-down is detected, the mobile device immediately issues a warning and uses kinematics formula to compute the motion of the human skeleton to reconstruct the elder's fall-down position in the reconstruction server; the information s transmitted to a Medical Center, so that the medical personnel can make a more precise medical judgment.

    摘要 III Abstract IV Acknowledgement V List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1.1 Research Objectives 3 1.2 Organization of the Dissertation 4 Chapter 2 Background and Related Work 6 2.1 Fall Detection 6 2.2 Health Care System 7 2.3 Triple Accelerometer Sensor 8 2.4 Gyroscope Sensor 9 Chapter 3 Detection of Cognitive Injured Body Region for Multi-Sensor 11 3.1 Introduction 11 3.2 Cognitive Injured Body Region Detection for Elderly Falling 11 3.3 Experiment Result and Analysis 23 3.4 Summary 27 Chapter 4 An Environmental-Adaptive Fall Detection System 28 4.1 Introduction 28 4.2 System Design and Methods 31 4.3 Experiment Result and Analysis 42 4.4 Summary 48 Chapter 5 3D Reconstruction Announcing System for Falling Detection 50 5.1 Introduction 50 5.2 System Architecture Introduction 50 5.3 Falling Detection System 51 5.4 Falling Process Reconstruction System 52 5.5 Emergency Report System 57 5.6 System Implementation 59 5.7 Summary 61 Chapter 6 Conclusion and Future Works 62 6.1 Conclusion 62 6.2 Future Works 63 References 64

    [1] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao and V. C. M. Leung, "Body Area Networks: A Survey", ACM/Springer Mobile Networks and Applications (MONET), Vol. 16, No. 2, pp. 171-193, 2010
    [2] S. Gonzalez, M. Chen and V. Leung, "Mobility Support for Health Monitoring at Home Using Wearable Sensors", IEEE Transactions on Information Technology in Biomedicine, vol.15, no.4, pp.539-549, 2011)
    [3] X. Liang, M. Chen, I. Balasingham and V. Leung, "Cooperative Communications with Relay Selection for Wireless Sensor Networks: Design Issues and Applications", Wireless Communications and Mobile Computing, , DOI: 10.1002/wcm.1138, 2011
    [4] K. Lin and M. Chen, "Energy Efficient Data Collection with Mobile Agent in Wireless Multimedia Sensor Networks", EURASIP Journal on Wireless Communications and Networking, Vol. 2011, No. 142, pp. 1-12, Nov. 2011.
    [5] M. Kranz, P. Holleis and A. Schmidt, "Embedded Interaction: Interacting with the Internet of Things," IEEE Internet Computing, vol.14, no.2, pp.46-53, 2010
    [6] A. Sixsmith and N. Johnson., "A Smart sensor to detect the falls of the elderly," IEEE Pervasive Computing, Vol. 3, Issue 2, pp 42–47, April-June 2004
    [7] N. Thome, S. Miguet and S. Ambellouis, "A Real-Time, Multiview Fall Detection System: A LHMM-Based Approach," IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, pp. 1522-1532, 2008
    [8] C.C. Wang, C.Y. Chiang, P.Y. Lin, Y.C. Chou, I.T. Kuo, C.N. Huang and C.T. Chan, "Development of a Fall Detecting System for the Elderly Residents," Proc. of The 2nd International Conference on Bioinformatics and Biomedical Engineering, 16-18 May, pp 1359-1362, 2008
    [9] G. Diraco, A. Leone and P. Siciliano, "An active vision system for fall detection and posture recognition in elderly healthcare," Proc. of the Conference on Design, Automation and Test in Europe, 8-12 Mar., pp 1536, 2010
    [10] T. Hori, Y. Nishida, and H. Aizawa, “Sensor network for supporting elderly care home,” Proc. of IEEE Sensors Conf., Vienna, Austria, pp. 575–578, Oct. 2004
    [11] T. Beth, I. Boesnach, M. Haimeri, J. Moldenhauer, K. Bos, and V. Wank, “Characteristics in human motion-from acquisition to analysis,” Proc. of 2006 IEEE Int. Conf. Robot. Autom., Humanoids, Germany, pp. 56–56, May 2006
    [12] C. Sminchisescu and B. Triggs, “Estimating articulated human motion with covariance scaled sampling,” Int. J. Robot. Res., vol. 22, no. 6, pp. 371–391, 2003.
    [13] G. Mori, “Recovering 3D human body configurations using shape contexts,” IEEE Trans. Pattern Analy. Mach. Intell., vol. 28, no. 7, pp. 1052–1062, 2006.
    [14] H. Foroughi, A. Naseri, A. Saberi, and H. S. Yazdi, “An eigenspacebased approach for human fall detection using integrated time motion image and neural network,” Proc. of 9th Int. Conf. Signal Process., Beijing, pp. 1499–1503, China, Jan. 2008
    [15] P. F. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures for object recognition,” Int. J. Comput. Vision, vol. 61, no. 1, pp. 55–79, 2005.
    [16] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G. Celler, “Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring,” IEEE Trans. Informat. Technol. Biomed., vol. 10, pp. 156–167, 2006.
    [17] M. Kangas, A. Konttila, P. Lindgren, I.Winblad, and T. Jamsa, “Comparison of low-complexity fall detection algorithms for body attached accelerometers,” Gait Posture, vol. 28, no. 2, pp. 285–291, 2008.
    [18] N. Noury, A. Fleury, P. Rumeau, A. K. Bourke, G. O. Laighin, V. Rialle, and J. E. Lundy, “Fall detection – Principles and methods,” Proc. of 29th Annu. Int. Conf. IEEE EMBS Cite Internationale, Lyon, France, pp. 1663–6, Aug. 2007
    [19] W. Chia-Chi, C. Chin-Yen, L. Po-Yen, C. Yi-Chieh, I. T. Kuo, H. Chih-Ning, and C. Chia-Tai, “Development of a fall detecting system for the elderly residents,” Proc. of IEEE Int. Conf. Bioinformat. Biomed. Eng. (ICBBE’08), Shanghai, China, pp. 1359–1362, May 2008
    [20] P. H. Veltink, H. B. J. Bussmann, W. de Vries, W. L. J. Martens, and R. C. Van Lummel, “Detection of static and dynamic activities using uniaxial accelerometers,” IEEE Trans. Rehabilitation Eng., vol. 4, pp. 375–385, 1996.
    [21] Z. Tong, W. Jue, L. Ping, and H. Jing, “Fall detection by embedding an accelerometer in cellphone and using KFD algorithm,” IJCSNS – Int. J. Comput. Sci. Network Security, vol. 6, no. 10, pp. 277–284, 2006.
    [22] M. J. Mathie, N. H. Lovell, A. C. F. Coster, and B. G. Celler, “Determining activity using a triaxial accelerometer,” Proc. of 2nd Joint EMBS/BMES Conf., Houston, TX, pp. 2481–2482, Oct. 2002
    [23] F. R. Allen, E. Ambikairajah, N. H. Lovell, and B. G. Celler, “Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models,” Physiol. Meas., vol. 27, no. 10, pp. 935–51, 2006.
    [24] M. Kangas, A. Konttila, I. Winblad, and T. Jamsa, “Determination of simple thresholds for accelerometry-based parameters for fall detection,” Proc. of IEEE Int. Conf. Eng. Med. Biol. Soc., Lyon, France, pp. 1367–1370, Aug. 2007
    [25] A. K. Bourke, J. V. O’Brien, and G. M. Lyons, “Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm,” Gait Posture, vol. 26, no. 2, pp. 194–199, 2007.
    [26] L. Suhuai and H. Qingmao, “A dynamic motion pattern analysis approach to fall detection,” Proc. of IEEE Int.Workshop Biomed. Circuits Syst., pp. 1–5-8a, 2004
    [27] A. Saxena, M. Sun, and A. Y. Ng, “Make3D: Learning 3D scene structure from a single still image,” IEEE Trans. Pattern Analy. Mach. Intell., vol. 31, no. 5, pp. 824–840, 2009.
    [28] H. Harms, O. Amft, G. Tröster, and D. Roggen, “SMASH: A distributed sensing and processing garment for the classification of upper body postures,” Proc. of ICST 3rd Int. Conf. Body Area Networks, Tempe, AZ, Mar. 2008.
    [29] Rougier, C., Meunier, J., St-Arnaud, A., and Rousseau, J., “Monocular 3D head tracking to detect falls of elderly people.” Proc. of Engineering in Medicine and Biology Society, 2006. EMBS ’06. 28th Annual International Conference of the IEEE. pp. 6384. New York, 30 Aug.–3 Sept., 2006.
    [30] Kun, L.G, “Homecare and disease prevention: Reviewing a decade of evolution—privacy still the biggest hurdle.” Proc. of Engineering in Medicine and Biology Society, 2006. EMBS ’06. 28th Annual International Conference of the IEEE. pp. 4685–4685. New York, 30 Aug.–3 Sept., 2006.
    [31] Verhenneman, G., and Veys, A., “My camera, my buddy? Legal and sociological assessment of the potential of video surveillance in eHomeCare.” Proc. of Information Technology and Applications in Biomedicine, 2009. ITAB 2009. 9th International Conference on. pp. 1–6. Larnaca, 4–7 Nov. 2009.
    [32] Sixsmith, A., and Johnson, N., “A smart sensor to detect the falls of the elderly.” IEEE Pervasive Computing 3(2):42–47, 2004.
    [33] Degen, T., Jaeckel, H., Rufer, M., and Wyss, S., “SPEEDY: A fall detector in a wrist watch.” Proc. of the 7th IEEE International Symposium on Wearable Computers. pp. 184–187. New York, USA, 21–23 Oct. 2003.
    [34] Lindemann, U.,Hock, A., and Stuber, M., “Evaluation of a fall detector based on accelerometers: A pilot study.” Med. Biol. Eng. Comput. 43(5):548–551.
    [35] Yang, C. C., and Hsu, Y. L., “Development of a portable system for physical activity assessment in a home environment.” Proc. of International Computer Symposium, Taipei Taiwan. pp. 1339–1344. 4–6 Dec. 2006
    [36] Wang, C. C., Chiang, C. Y., Lin, P. Y., Chou, Y. C., Kuo, I. T., Huang, C. N., and Chan, C. T., “Development of a fall detecting system for the elderly residents.” Proc. of Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on. pp. 1359–1362. Shanghai, 16–18 May 2008.
    [37] Jeon, A. Y., Ye, S. Y., Park, J. M., Kim K. M., Kim, J. H., Jung, D. K., Jeon, G. R., and Ro, J. H., “Emergency detection system using PD Abased on self-response algorithm.” Proc. of Convergence Information Technology, 2007. International Conference on. pp. 1207–1212. Gyeongju, 21–23 Nov. 2007.
    [38] Li, Q., Stankovic, J. A., Hanson, M. A., Barth, A. T., Lach, J., and Zhou, G., Accurate, “fast fall detection using gyroscopes and accelerometer-derived posture information.” Proc. of Wearable and Implantable Body Sensor Networks, 2009. BSN 2009. Sixth International Workshop on. pp. 138–143. Berkeley CA, 3–5 June 2009.
    [39] Wu, G. E., and Xue, S., Portable preimpact fall detector with inertial sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 16(2):178, 2008.
    [40] Doukas, C., Maglogiannis, I., Katsarakis, N., and Pneumatikakis, A., “Enhanced human body fall detection utilizing advanced classification of video and motion perceptual components.” IFIP Advances in Information and Communication Technology 296:185–193, 2009.
    [41] Chen, J., Kwong, K., Chang, D., Luk, J., and Bajcsy, R., “Wearable sensors for reliable fall detection.” Proc. of Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the. pp. 3551–3554. Shanghai, 17–18 Jan. 2006.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE