| 研究生: |
廖啟宏 Liao, Ci-Hong |
|---|---|
| 論文名稱: |
動態量子秘密分享協定 Dynamic Quantum Secret Sharing Protocols |
| 指導教授: |
黃宗立
Hwang, Tzonelih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 量子密碼學 、量子祕密分享 、量子糾結態 、動態 |
| 外文關鍵詞: | Quantum Cryptography, Quantum Secret Sharing, Quantum Entangled States, Dynamic |
| 相關次數: | 點閱:151 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今網路如此發達的環境中,如何確保傳輸的資訊安全是一個重要的研究議題,目前密碼學家提出了許多安全性基於數學難題的保護機制,讓攻擊者無法在短時間內解得明文訊息,如常見的對稱式金鑰密碼系統以及非對稱式金鑰密碼系統等等。然而目前量子電腦已被證明具有強大的平行運算能力,並且Shor 證實了利用量子演算法,在多項式時間內破解了因數分解之難題。因此,如何在具有強大運算能力的量子電腦下,又能設計出安全的量子密碼技術,是目前密碼學熱門研究領域之一。
許多量子密碼學的應用在近年內被提出,諸如量子金鑰分配、量子安全直接通訊、量子私密比較、量子秘密分享、量子投票等等。其安全性是植基於量子的物理特性,包括海森堡測不準原理、不可複製性等等,使得溝通雙方可以確保傳輸的資訊安全或共享一把到達理論安全的金鑰,即使有監聽者監聽,也可以利用以上的特性來檢查出來。
量子秘密分享(Quantum Secret Sharing)是量子密碼學中一個重要的研究議題,其主要的目標是秘密分享者(boss)持有一把私密金鑰,並且利用量子的特性,將金鑰分成許多子金鑰,之後將每個子金鑰分別安全的傳送給每個成員(agents),當成員想還原出秘密分享著的私密金鑰時,必須所有拿到子金鑰的成員一起合作,才能還原出密碼分享者的私密金鑰。目前已經存在許多利用不同量子態的量子秘密分享協定被提出,如Einstein-Podolsky-Rosen糾結態、Green-Horne-Zeilinger糾結態、單光子等等。
然而在這些量子秘密分享協定中,大部分的協定皆沒有考慮到動態增減人的特性。當秘密分享者把帶有子金鑰資訊的量子傳給成員時,若在此時有新的成員想要加入,或者是舊有的成員想要離開,秘密分享者必須重新產生帶有子金鑰資訊的量子,並且之前收到量子的成員必須把舊有的量子丟棄,即使成員還尚未量測收到的量子,之後再重新接收新的量子。因此,動態的量子秘密分享(Dynamic Quantum Secert Sharing)即被提出來改善這個問題。
本論文將會對先前的動態量子金鑰分享協定提出一個安全性的問題,必且提出初步的解法。接著也分別使用GHZ糾結態與EPR糾結態來設計出兩個新的動態量子秘密分享協定,且針對現存的一些攻擊與新提出的安全性上的問題來做討論。之後再與現存的動態量子秘密分享協定來做深入的比較,深入探討在整體效率與增減人階段的作法。
The Internet environment is extremely prosperous. Consequently, transmitting a mes-sage securely through the Internet has become a fundamental issue. Cryptographers have proposed numerous protective schemes (i.e., symmetric key encryption and asymmetric key encryption) based on mathematics. An eavesdropper cannot decode a ciphertext message within a short period. However, the quantum computer has proven to be a powerful weapon with parallel computing ability to make the computational task easier. Peter Shor proposed a quantum algorithm to solve the factorization problem in polynomial time. Therefore, how to design a secure quantum cryptography protocol has become a popular research topic.
Numerous recent applications of quantum cryptography have been proposed, such as quantum key distrubtion (QKD), quantum secure direct communication (QSDC), quantum privacy comparision (QPC), quantum secret sharing (QSS), and quantum voting (QV). The security of these applications is based on quantum physics properties, including the Hilbert uncertainty principle of measurement and the no-cloning theorem. Two-party communica-tion ensures the security of the transmission message or the theoretical security key, which can also check the eavesdropper by using these properties.
Quantum secret sharing (QSS) is a crucial research topic in quantum cryptography. A QSS protocol allows a secret key to be shared among several agents by using quantum me-chanics such that the secret key can only be recovered when sufficient legitimate agents cooperate. Numerous QSS schemes have been developed using different quantum states (i.e., EPR pair, GHZ state, and single photon).
However, most QSS schemes do not address the problem of adding and deleting agents. After the boss delivers the shadow key qubits to agents, if an agent wants to join or leave the QSS, the boss must generate new qubits and all agents must abort the qubits in their hand. Therefore, dynamic quantum secret sharing (DQSS) has been proposed to solve this problem.
This thesis first indicates a new security issue in the Hsu et al. DQSS protocol regard-ing the honesty of a revoked agent and proposes a possible solution. Because it does not address this problem, the Hsu et al. DQSS protocol fails to provide a secret sharing func-tion. Two DQSS protocols are then proposed using the GHZ state and the Bell state, fol-lowed by a discussion of certain attacks and a new security on the 2 proposed DQSS protocols. Finally, this thesis presents an analysis of qubit efficiency and the volatility of the agents on the 2 proposed protocols compared with the existing DQSS protocols.
[1] N. F. PUB, "46-3. Data Encryption Standard," Federal Information Processing Standards, National Bureau of Standards, US Department of Commerce, 1977.
[2] X. J. Lai and J. L. Massey, "A Proposal for a New Block Encryption Standard," Lecture Notes in Computer Science, vol. 473, pp. 389-404, 1991.
[3] R. L. Rivest, A. Shamir, and L. Adleman, "A method for obtaining digital signatures and public-key cryptosystems," Communications of the ACM, vol. 21, pp. 120-126, 1978.
[4] P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," Siam Journal on Computing, vol. 26, pp. 1484-1509, Oct 1997.
[5] L. K. Grover, "Quantum mechanics helps in searching for a needle in a haystack," Physical Review Letters, vol. 79, pp. 325-328, Jul 14 1997.
[6] C. H. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 1984.
[7] M. Hillery, V. Buzek, and A. Berthiaume, "Quantum secret sharing," Physical Review A, vol. 59, pp. 1829-1834, Mar 1999.
[8] J. H. Chen, K. C. Lee, and T. Hwang, "THE ENHANCEMENT OF ZHOU et al.'s QUANTUM SECRET SHARING PROTOCOL," International Journal of Modern Physics C, vol. 20, pp. 1531-1535, Oct 2009.
[9] F. G. Deng, X. H. Li, and H. Y. Zhou, "Efficient high-capacity quantum secret sharing with two-photon entanglement," Physics Letters A, vol. 372, pp. 1957-1962, Mar 17 2008.
[10] F. G. Deng, G. L. Long, and H. Y. Zhou, "An efficient quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs," Physics Letters A, vol. 340, pp. 43-50, Jun 6 2005.
[11] F. G. Deng, H. Y. Zhou, and G. L. Long, "Circular quantum secret sharing," Journal of Physics a-Mathematical and General, vol. 39, pp. 14089-14099, Nov 10 2006.
[12] D. Gottesman, "Theory of quantum secret sharing," Physical Review A, vol. 61, Apr 2000.
[13] G. P. Guo and G. C. Guo, "Quantum secret sharing without entanglement," Physics Letters A, vol. 310, pp. 247-251, Apr 21 2003.
[14] L. F. Han, Y. M. Liu, J. Liu, and Z. J. Zhang, "Multiparty quantum secret sharing of secure direct communication using single photons," Optics Communications, vol. 281, pp. 2690-2694, May 1 2008.
[15] L. F. Han, Y. M. Liu, S. H. Shi, and Z. J. Zhang, "Improving the security of a quantum secret sharing protocol between multiparty and multiparty without entanglement," Physics Letters A, vol. 361, pp. 24-28, Jan 22 2007.
[16] L. F. Han, Y. M. Liu, H. Yuan, and Z. J. Zhang, "Efficient multiparty-to-multiparty quantum secret sharing via continuous variable operations," Chinese Physics Letters, vol. 24, pp. 3312-3315, Dec 2007.
[17] L. F. Han, Y. M. Liu, and Z. J. Zhang, "Multiparty quantum secret sharing of classical message using cavity quantum electrodynamic system," Chinese Physics Letters, vol. 23, pp. 1988-1991, Aug 2006.
[18] C. R. Hsieh, C. W. Tasi, and T. Hwang, "Quantum Secret Sharing Using GHZ-Like State," Communications in Theoretical Physics, vol. 54, pp. 1019-1022, Dec 2010.
[19] L. Y. Hsu and C. M. Li, "Quantum secret sharing using product states," Physical Review A, vol. 71, Feb 2005.
[20] C. C. Hwang, T. Hwang, and C. M. Li, "Enhancement of GAO's Multiparty Quantum Secret Sharing," Communications in Theoretical Physics, vol. 56, pp. 79-82, Jul 15 2011.
[21] T. Hwang, C. C. Hwang, and C. M. Li, "Multiparty quantum secret sharing based on GHZ states," Physica Scripta, vol. 83, Apr 2011.
[22] T. Hwang, C. C. Hwang, C. W. Yang, and C. M. Li, "Revisiting Deng et al.'s Multiparty Quantum Secret Sharing Protocol," International Journal of Theoretical Physics, vol. 50, pp. 2790-2798, Sep 2011.
[23] M. Jiang, X. Huang, L. L. Zhou, Y. M. Zhou, and J. Zeng, "An efficient scheme for multi-party quantum state sharing via non-maximally entangled states," Chinese Science Bulletin, vol. 57, pp. 1089-1094, Apr 2012.
[24] Y. M. Li, K. S. Zhang, and K. C. Peng, "Multiparty secret sharing of quantum information based on entanglement swapping," Physics Letters A, vol. 324, pp. 420-424, Apr 26 2004.
[25] J. Lin and T. Hwang, "An enhancement on Shi et al.'s multiparty quantum secret sharing protocol," Optics Communications, vol. 284, pp. 1468-1471, Mar 1 2011.
[26] J. Lin and T. Hwang, "Bell state entanglement swappings over collective noises and their applications on quantum cryptography," Quantum Information Processing, vol. 12, pp. 1089-1107, Feb 2013.
[27] J. Lin and T. Hwang, "New circular quantum secret sharing for remote agents," Quantum Information Processing, vol. 12, pp. 685-697, Jan 2013.
[28] J. Lin, C. W. Yang, C. W. Tsai, and T. Hwang, "Intercept-Resend Attacks on Semi-quantum Secret Sharing and the Improvements," International Journal of Theoretical Physics, vol. 52, pp. 156-162, Jan 2013.
[29] L. L. Liu, C. W. Tsai, and T. Hwang, "Quantum Secret Sharing Using Symmetric W State," International Journal of Theoretical Physics, vol. 51, pp. 2291-2306, Jul 2012.
[30] Z. X. Man, Y. J. Xia, and Z. J. Zhang, "Many-agent controlled multi-player quantum secret sharing scheme," International Journal of Modern Physics C, vol. 18, pp. 177-185, Feb 2007.
[31] H. D. Massoud and F. Elham, "A novel and efficient multiparty quantum secret sharing scheme using entangled states," Science China-Physics Mechanics & Astronomy, vol. 55, pp. 1828-1831, Oct 2012.
[32] R. H. Shi, L. S. Huang, W. Yang, and H. Zhong, "Multiparty quantum secret sharing with Bell states and Bell measurements," Optics Communications, vol. 283, pp. 2476-2480, Jun 1 2010.
[33] Y. Sun, Q. Y. Wen, F. Gao, X. B. Chen, and F. C. Zhu, "Multiparty quantum secret sharing based on Bell measurement," Optics Communications, vol. 282, pp. 3647-3651, Sep 1 2009.
[34] C. W. Tsai and T. Hwang, "Multi-party quantum secret sharing based on two special entangled states," Science China-Physics Mechanics & Astronomy, vol. 55, pp. 460-464, Mar 2012.
[35] H. Y. Tseng, C. W. Tsai, T. Hwang, and C. M. Li, "Quantum Secret Sharing Based on Quantum Search Algorithm," International Journal of Theoretical Physics, vol. 51, pp. 3101-3108, Oct 2012.
[36] X. Wang, Y. M. Liu, L. F. Han, and Z. J. Zhang, "Multiparty Quantum Secret Sharing of Secure Direct Communication with High-Dimensional Quantum Superdense Coding," International Journal of Quantum Information, vol. 6, pp. 1155-1163, Dec 2008.
[37] L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, "Efficient multiparty quantum-secret-sharing schemes," Physical Review A, vol. 69, May 2004.
[38] C. W. Yang, C. W. Tsai, and T. Hwang, "Thwarting intercept-and-resend attack on Zhang's quantum secret sharing using collective rotation noises," Quantum Information Processing, vol. 11, pp. 113-122, Feb 2012.
[39] Y. Q. Zhang and S. Zhang, "Comment on "Multiparty secret sharing of quantum information via cavity QED"," Optics Communications, vol. 270, pp. 100-101, Feb 1 2007.
[40] Z. J. Zhang, "Multiparty quantum secret sharing of secure direct communication," Physics Letters A, vol. 342, pp. 60-66, Jul 4 2005.
[41] Z. J. Zhang, "Multiparty secret sharing of quantum information via cavity QED," Optics Communications, vol. 261, pp. 199-202, May 1 2006.
[42] Z. J. Zhang, "Robust multiparty quantum secret key sharing over two collective-noise channels," Physica a-Statistical Mechanics and Its Applications, vol. 361, pp. 233-238, Feb 15 2006.
[43] Z. J. Zhang, G. Gao, X. Wang, L. F. Han, and S. H. Shi, "Multiparty quantum secret sharing based on the improved Bostrom-Felbinger protocol," Optics Communications, vol. 269, pp. 418-422, Jan 15 2007.
[44] Z. J. Zhang, Y. M. Liu, M. Fang, and D. Wang, "Multiparty quantum secret sharing scheme of classical messages by swapping qudit-state entanglement," International Journal of Modern Physics C, vol. 18, pp. 1885-1901, Dec 2007.
[45] Z. J. Zhang and Z. X. Man, "Multiparty quantum secret sharing of classical messages based on entanglement swapping," Physical Review A, vol. 72, Aug 2005.
[46] Z. J. Zhang and Z. X. Man, "Multiparty quantum secret sharing of key using practical faint laser pulses," Chinese Physics Letters, vol. 22, pp. 1588-1591, Jul 2005.
[47] Z. J. Zhang, J. Yang, Z. X. Man, and Y. Li, "Multiparty secret sharing of quantum information using and identifying Bell states," European Physical Journal D, vol. 33, pp. 133-136, Apr 2005.
[48] P. Zhou, X. H. Li, Y. J. Liang, F. G. Deng, and H. Y. Zhou, "Multiparty quantum secret sharing with pure entangled states and decoy photons," Physica a-Statistical Mechanics and Its Applications, vol. 381, pp. 164-169, Jul 15 2007.
[49] J.-L. Hsu, S.-K. Chong, T. Hwang, and C.-W. Tsai, "Dynamic quantum secret sharing," Quantum Information Processing, 2012.
[50] H.-Y. Jia, Q.-Y. Wen, F. Gao, S.-J. Qin, and F.-Z. Guo, "Dynamic quantum secret sharing," Physics Letters A, vol. 376, pp. 1035-1041, 2012.
[51] T.-Y. Wang and Y.-P. Li, "Cryptanalysis of dynamic quantum secret sharing," Quantum Information Processing, vol. 12, pp. 1991-1997, 2012.
[52] C.-H. Liao, C.-W. Yang, and T. Hwang, "Comment on “Dynamic quantum secret sharing”," Quantum Information Processing, 2013.
[53] A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?," Physical Review, vol. 47, pp. 0777-0780, May 1935.
[54] D. M. Greenberger, M. A. Horne, and A. Zeilinger, "Going beyond Bell’s theorem," in Bell’s theorem, quantum theory and conceptions of the universe, ed: Springer, 1989, pp. 69-72.
[55] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, "Demonstration of a Fundamental Quantum Logic Gate," Physical Review Letters, vol. 75, pp. 4714-4717, Dec 18 1995.
[56] C. H. Bennett and D. P. DiVincenzo, "Quantum information and computation," Nature, vol. 404, pp. 247-255, Mar 16 2000.
[57] T. Hwang, C. M. Li, and N. Y. Lee, "Secure direct communication using deterministic BB84 protocol," International Journal of Modern Physics C, vol. 19, pp. 625-635, Apr 2008.
[58] C. W. Yang, T. Hwang, and Y. P. Luo, "Enhancement on "quantum blind signature based on two-state vector formalism"," Quantum Information Processing, vol. 12, pp. 109-117, Jan 2013.
[59] C. W. Yang and T. Hwang, "Improved QSDC Protocol over a Collective-Dephasing Noise Channel," International Journal of Theoretical Physics, vol. 51, pp. 3941-3950, Dec 2012.
[60] C. W. Yang and T. Hwang, "Quantum dialogue protocols immune to collective noise," Quantum Information Processing, vol. 12, pp. 2131-2142, Jun 2013.
校內:2018-08-29公開