簡易檢索 / 詳目顯示

研究生: 吳俊陞
Wu, Chun-Sheng
論文名稱: 銫鉛溴化物鈣鈦礦高品質微米半球共振腔之單模雷射研究
High-Quality Single-Mode Laser Based on Cesium Lead Bromide Perovskite Hemisphere Microcavity
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 78
中文關鍵詞: 銫鉛溴化物鈣鈦礦單模雷射耳語迴廊模態柏塞爾效應自發輻射耦合因子
外文關鍵詞: CsPbBr3, Perovskite, Single-mode laser, Whispering Gallery Mode, Purcell effect, Spontaneous emission coupling factor
相關次數: 點閱:71下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有極高品質因子單模雷射被實現於本文中之銫鉛溴化物鈣鈦礦微米半球,本文為世界上首次於銫鉛溴化物鈣鈦礦系統中展示一系列共振腔相關之詳細雷射特性研究。
    在本論文中,我們成功地以化學氣相沉積儀成長大小可變之銫鉛溴化物鈣鈦礦微米半球。半高寬約為0.04 奈米;品質因子約為13673 之單模雷射成功於具備高光束縛因子與高光學增益的銫鉛溴化物鈣鈦礦微米半球微共振腔中達成。
    為了更深入探討共振腔對雷射特性的影響,我們展示了雷射閥值對於不同共振腔大小之研究,在實驗中我們發現隨著共振腔半徑縮小,雷射閥值會上升。而其之間的關係可以用Gth ∝ 1/R^2 關係式來做擬合。另外,我們也完成不同大小之共振腔的時間解析螢光光譜,用以進一步驗證上述之共振腔大小與雷射閥值的關係。在此實驗我們發現較大的共振腔具有較長的螢光壽命,利用雷射的載子速率方程式我們可以得出較長螢光壽命者較容易達成雷射,此結論與最初之結論相吻合。除此之外,我們認為在本系統中也應考慮柏塞爾效應的影響,所以我們也進行了在不同共振腔大小中計算柏塞爾因子與自發輻射增強因子的大小。
    最後,除了銫鉛溴化物,我們也同時也在銫鉛氯化物與銫鉛碘化物微米球共振腔系統中展示了單模雷射現象。

    Ultra high-Q single-mode laser is realized in individual Cesium Lead Bromide (CsPbBr3) perovskite micro-hemispheres. Cavity size-dependence lasing property analysis is first reported under this material system. In this work, we fabricated high quality CsPbBr3 microhemispheres via chemical vapor deposition method with tunable sizes. Due to the good
    optical confinement capability of the whispering gallery resonanted cavity and high optical gain of CsPbBr3 Perovskite, single-mode lasing has been achieved with a linewidth (〜 0.04 nm) and ultra high quality factor (about 13673) in CsPbBr3 micro-hemispheres. To indepth study the physical effects between the lasing threshold and the cavity, a series of cavity size-dependence photoluminescence analysis were done. From the size-dependence lasing threshold measurement, we discovered that the lasing threshold increases while the cavity size decreases, and the relation is well fitted by the Gth ∝ 1/R2. The time-resolved PL analysis was also performed to further confirm the size-dependence lasing threshold relation. The larger cavity stands for longer PL lifetime and indicating easier to achieve carrier population inversion. The Purcell effect should also be considered in the microcavity system.
    We investigated the Purcell factor and the spontaneous emission coupling factor in different sizes of cavities. At last, we also realized single-mode lasing action in CsPbI3 and CsPbCl3 Perovskite micro-spheres.

    摘要i Abstract ii 誌謝iii Table of Contents iv List of Tables vi List of Figures vii Chapter 1. Introduction 1 1.1. Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Historical Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1. WGM Microcavity Laser . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2. Perovskite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 2. Physical Theories 12 2.1. Material properties of CsPbX3 Perovskite . . . . . . . . . . . . . . . . . . 12 2.1.1. Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2. Point Defect in CsPbBr3 . . . . . . . . . . . . . . . . . . . . . . . 15 2.2. Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1. Basic Optical Properties . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2. Photo-luminescence . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3. Lasing in CsPbBr3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1. Carrier Dynamic in CsPbBr3 . . . . . . . . . . . . . . . . . . . . . 21 2.4. Microcavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.1. WGM Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.2. Single-Longitudinal-Mode . . . . . . . . . . . . . . . . . . . . . . 24 2.4.3. Purcell Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.4. Spontaneous Emission Coupling Factor . . . . . . . . . . . . . . . 26 Chapter 3. Experimental Setups 28 3.1. Synthesis of Perovskite Mirocrystals . . . . . . . . . . . . . . . . . . . . . 28 3.1.1. Chemical Vapor Deposition . . . . . . . . . . . . . . . . . . . . . . 28 3.2. Material Physical Characteristic Measurements . . . . . . . . . . . . . . . 31 3.2.1. Scanning Electron Microscope (SEM) . . . . . . . . . . . . . . . . 31 3.2.2. X-ray Diffraction (XRD) . . . . . . . . . . . . . . . . . . . . . . . 33 3.3. Optical Properties Measurements . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.1. Micro Photoluminescence Spectroscopy (micro-PL) . . . . . . . . . 35 3.3.2. Time-Correlated Single Photon Counting System (TCSPC) . . . . . 37 3.3.3. Optical UV-VIS Absorption . . . . . . . . . . . . . . . . . . . . . 40 Chapter 4. Results and Discussions 41 4.1. Morphology and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.1. Optical Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.2. Scanning Electron Microscope (SEM) Images . . . . . . . . . . . . 42 4.1.3. XRD Anaylsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2. Basic Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.1. Optical Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.2. Steady-State PL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3. Lasing Action Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3.1. Cavity Size-Dependence Free Spectral Range (FSR) . . . . . . . . 47 4.3.2. Single-Mode Lasing Spectra . . . . . . . . . . . . . . . . . . . . . 49 4.3.3. Size-Dependence Lasing Threshold Anaylsis . . . . . . . . . . . . 51 4.3.4. Size-Dependence Time-Resolved PL Anaylsis . . . . . . . . . . . . 56 4.3.5. Size-Dependence Purcell Factor Anaylsis . . . . . . . . . . . . . . 59 4.3.6. Size-Dependence Spontaneous Emission Coupling Factor Anaylsis . 61 4.3.7. Modulation of Single-Mode Lasing Position . . . . . . . . . . . . . 65 4.4. Comparison Bwtween CsPbX3 (X = Cl -, Br -, I -) . . . . . . . . . . . . . . 66 4.4.1. Material Anaysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4.2. Optical Property and Performance . . . . . . . . . . . . . . . . . . 67 Chapter 5. Summary 71 5.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 References 72

    [1] G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, and P. Mandal. Terahertz conductivity within colloidal CsPbBr3 Perovskite nanocrystals: Remarkably
    high carrier mobilities and large diffusion lengths. Nano Letters, 16(8):4838–48, 2016.
    [2] J. Ramade, L. M. Andriambariarijaona, V. Steinmetz, N. Goubet, L. Legrand, T. Barisien, F. Bernardot, C. Testelin, E. Lhuillier, A. Bramati, and M. Chamarro. Fine structure of excitons and electron-hole exchange energy in polymorphic CsPbB3 single nanocrystals. Nanoscale, 10(14):6393–6401, 2018.
    [3] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko. Nanocrystals of Cesium Lead Halide Perovskites
    (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 15(6):3692–3696, 2015.
    [4] H. C. Wang, Z. Bao, H. Y. Tsai, A. C. Tang, and R. S. Liu. Perovskite quantum dots and their application in light-emitting diodes. Small, 14(1), 2018.
    [5] S. W. Eaton, M. L. Lai, N. A. Gibson, A. B. Wong, L. T. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. D. Yang. Lasing in robust Cesium Lead Halide Perovskite nanowires.
    Proceedings of the National Academy of Sciences of the United States of America, 113(8):1993–1998, 2016.
    [6] Q. Zhang, R. Su, X. F. Liu, J. Xing, T. C. Sum, and Q. H. Xiong. High-quality whispering-gallery-mode lasing from Cesium Lead Halide Perovskite nanoplatelets. Advanced Functional Materials, 26(34):6238–6245, 2016.
    [7] B. Tang, H. X. Dong, L. X. Sun, W. H. Zheng, Q. Wang, F. F. Sun, X. W. Jiang, A. L. Pan, and L. Zhang. Single-mode lasers based on Cesium Lead Halide Perovskite submicron spheres. ACS Nano, 11(11):10681–10688, 2017.
    [8] T. H. Maiman. Stimulated optical radiation in Ruby. Nature, 187(4736):493–494, 1960.
    [9] H. Yan, J. Johnson, M. Law, R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. Yang. ZnO nanoribbon microcavity lasers. Advanced Materials, 15(22):1907–1911, 2003.
    [10] Bijoy K. D., R. Ricken, V. Quiring, H. Suche, and W. Sohler. Distributed feedback–distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide.
    Optics Letters, 29(2):165–167, Jan 2004.
    [11] X. H. Zhang, Y. F. Cheung, Y. Y. Zhang, and H. W. Choi. Whispering-gallery mode lasing from optically free-standing InGaN microdisks. Optics Letters, 39(19):5614–5617, 2014.
    [12] Y. Akahane, T. Asano, B. S. Song, and S. Noda. High-q photonic nanocavity in a twodimensional photonic crystal. Nature, 425(6961):944–947, 2003.
    [13] S. C. Yang, Y. Wang, and H. D. Sun. Advances and prospects for whispering gallery mode microcavities. Advanced Optical Materials, 3(9):1136–1162, 2015.
    [14] F. Vollmer and S. Arnold. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nature Methods, 5(7):591–596, 2008.
    [15] L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nature Nanotechnology, 6(7):428–
    432, 2011.
    [16] S. K. Ozdemir, J. G. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang. Highly sensitive detection of nanoparticles with a selfreferenced and self-heterodyned whispering-gallery Raman microlaser. Proceedings of the National Academy of Sciences of the United States of America, 111(37):E3836–E3844, 2014.
    [17] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: Application to microcavity sensors for single-particle detection. Physical Review Letters, 112(20):5, 2014.
    [18] T. Kouno, K. Kishino, and M. Sakai. Lasing action on whispering gallery mode of selforganized GaN hexagonal microdisk crystal fabricated by rf-plasma-assisted molecular
    beam epitaxy. Ieee Journal of Quantum Electronics, 47(12):1565–1570, 2011.
    [19] H. Baek, C. H. Lee, K. Chung, and G. C. Yi. Epitaxial GaN microdisk lasers grown on graphene microdots. Nano Letters, 13(6):2782–5, 2013.
    [20] D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. D. Yang. Whispering gallery mode lasing from Zinc Oxide hexagonal nanodisks. ACS Nano, 4(6):3270–3276, 2010.
    [21] Q. Zhang, S. T. Ha, X. F. Liu, T. C. Sum, and Q. H. Xiong. Room-temperature near-infrared high-q Perovskite whispering-gallery planar nano lasers. Nano Letters, 14(10):5995–6001, 2014.
    [22] Marc De Graef;Michael E. McHenry. Structure of Materials. Cambridge University Press, 2012.
    [23] M. A. Green, A. Ho-Baillie, and H. J. Snaith. The emergence of Perovskite solar cells. Nature Photonics, 8(7):506–514, 2014.
    [24] N. Elliott. The crystal structure and magnetic susceptibility of Caesium Argentous Auric Chloride, Cs2AgAuCl6, and Caesium Aurous Auric Chloride, Cs2AuAuCl6. Journal of Chemical Physics, 2(7), 1934.
    [25] J. Shieh, K. C. Wu, and C. S. Chen. Switching Characteristics of MPB compositions of (Bi0.5Na0.5)TiO3–BaTiO3–(Bi0.5K0.5)TiO3 Lead-free ferroelectric ceramics. Acta Materialia, 55(9):3081–3087, 2007.
    [26] C. Zener. Interaction between the d-shells in the transition metals .2. ferromagnetic compounds of manganese with Perovskite structure. Physical Review, 82(3):403–405, 1951.
    [27] E. J. Fresia, L. Katz, and R. Ward. Cation substitution in Perovskite-like phases. Journal of the American Chemical Society, 81(18):4783–4785, 1959.
    [28] J. R. Partington, G. V. Planer, and II Boswell. Anomalous dielectric properties of polycrystalline titanates of the Perovskite type. Philosophical Magazine, 40(301):157–175, 1949.
    [29] C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos. Organic-Inorganic Hybrid materials as semiconducting channels in thin-film field-effect transistors. Science, 286(5441):945–947, 1999.
    [30] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka. Organometal Halide Perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17):6050–6051, 2009.
    [31] Best research-cell efficiency chart(accessed: 2019-05-21). https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf. Accessed:2019-05-21.
    [32] O. D. Miller, E. Yablonovitch, and S. R. Kurtz. Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE Journal of Photovoltaics, 2(3):303–311, 2012.
    [33] Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H.
    Friend. Bright light-emitting diodes based on Organometal Halide Perovskite. Nature Nanotechnology, 9(9):687–92, 2014.
    [34] B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J. M. Richter, L. Yang, L. Dai, M. Alsari, X. J. She, L. Liang, J. Zhang, S. Lilliu, P. Gao, H. J. Snaith, J. Wang, N. C. Greenham, R. H. Friend, and D. Di. High-efficiency Perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics, 12(12):783–789, 2018.
    [35] G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum. Low-temperature solution-processed wavelength-tunable Perovskites for lasing. Nature Materials, 13:476, 2014.
    [36] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, and H. G. Boyen. Intrinsic thermal instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials, 5(15), 2015.
    [37] G. Niu, X. Guo, and L. Wang. Review of recent progress in chemical stability of Perovskite solar cells. Journal of Materials Chemistry A, 3(17):8970–8980, 2015.
    [38] J. W. Lee, D. H. Kim, H. S. Kim, S. W. Seo, S. M. Cho, and N. G. Park. Formamidinium and Cesium hybridization for photo- and moisture-stable Perovskite solar cell. Advanced Energy Materials, 5(20):1501310, 2015.
    [39] F. Xie, C. C. Chen, Y. Wu, X. Li, M. Cai, X. Liu, X. Yang, and L. Han. Vertical recrystallization for highly efficient and stable Formamidinium-based inverted-structure Perovskite solar cells. Energy & Environmental Science, 10(9):1942–1949, 2017.
    [40] Q. Zhang, R. Su, X. F. Liu, J. Xing, T. C. Sum, and Q. H. Xiong. High-quality whispering-gallery-mode lasing from Cesium Lead Halide Perovskite nanoplatelets. Advanced Functional Materials, 26(34):6238–6245, 2016.
    [41] W. J. Yin, Y. F. Yan, and S. H. Wei. Anomalous alloy properties in mixed Halide Perovskites. Journal of Physical Chemistry Letters, 5(21):3625–3631, 2014.
    [42] M. L. De Giorgi, A. Perulli, N. Yantara, P. P. Boix, and M. Anni. Amplified spontaneous emission properties of solution processed CsPbBr3 Perovskite thin films. The Journal of Physical Chemistry C, 121(27):14772–14778, 2017.
    [43] J. Z. Li, H. X. Dong, B. Xu, S. F. Zhang, Z. P. Cai, J. Wang, and L. Zhang. CsPbBr3 Perovskite quantum dots: saturable absorption properties and passively Q-switched visible lasers. Photonics Research, 5(5):457–460, 2017.
    [44] B. Tang, L. Sun, W. Zheng, H. Dong, B. Zhao, Q. Si, X. Wang, X. Jiang, A. Pan, and L. Zhang. Ultrahigh quality upconverted single-mode lasing in Cesium Lead Bromide spherical microcavity. Advanced Optical Materials, 6(20), 2018.
    [45] Q. Chen, N. De Marco, Y. Yang, T. B. Song, C. C. Chen, H. Zhao, Z. Hong, H. Zhou, and Y. Yang. Under the spotlight: The Organic–Inorganic hybrid Halide Perovskite for optoelectronic applications. Nano Today, 10(3):355–396, 2015.
    [46] V. M. Goldschmidt. Die Gesetze der Krystallochemie. Naturwissenschaften, 14:477–485, May 1926.
    [47] W. Travis, E. N. K. Glover, H. Bronstein, D. O. Scanlon, and R. G. Palgrave. On the application of the tolerance factor to Inorganic and hybrid Halide Perovskites: a revised system. Chemical Science, 7(7):4548–4556, 2016.
    [48] P. S. Whitfield, N. Herron, W. E. Guise, K. Page, Y. Q. Cheng, I. Milas, and M. K. Crawford. Structures, phase transitions and tricritical behavior of the hybrid Perovskite Methyl Ammonium Lead Iodide. Scientific Reports, 6:35685, 2016.
    [49] K. A. Muller, W. Berlinger, and F. Waldner. Characteristic structural phase transition in Perovskite-type compounds. Physical Review Letters, 21(12):814, 1968.
    [50] P. Cottingham and R. L. Brutchey. Depressed phase transitions and thermally persistent local distortions in CsPbBr3 quantum dots. Chemistry of Materials, 30(19):6711–6716,2018.
    [51] J. Li, H. Zhang, S. Wang, D. Long, M. Li, D. Wang, and T. Zhang. Inter-conversion between different compounds of ternary Cs-Pb-Br system. Materials (Basel), 11(5),2018.
    [52] X. Zhang, Z. Jin, J. Zhang, D. Bai, H. Bian, K. Wang, J. Sun, Q. Wang, and S. F. Liu. Allambient processed binary CsPbBr3-CsPb2Br5 Perovskites with synergistic enhancement
    for high-efficiency Cs-Pb-Br-based solar cells. ACS Applied Materials & Interfaces, 10(8):7145–7154, 2018.
    [53] X. Chen, D. Chen, J. Li, G. Fang, H. Sheng, and J. Zhong. Tunable CsPbBr3/Cs4PbBr6 phase transformation and their optical spectroscopic properties. Dalton Transactions, 47(16):5670–5678, 2018.
    [54] J. Kang and L. W. Wang. High defect tolerance in Lead Halide Perovskite CsPbBr3. The Journal of Physical Chemistry Letters, 8(2):489–493, 2017.
    [55] Y. Tong, E. Bladt, M. F. Ayguler, A. Manzi, K. Z. Milowska, V. A. Hintermayr, P. Docampo, S. Bals, A. S. Urban, L. Polavarapu, and J. Feldmann. Highly luminescent Cesium Lead Halide Perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angewandte Chemie International Edition, 55(44):13887–13892, 2016.
    [56] Q. Liu, Y. Wang, N. Sui, Y. Wang, X. Chi, Q. Wang, Y. Chen, W. Ji, L. Zou, and H. Zhang. Exciton relaxation dynamics in photo-excited CsPbI3 Perovskite nanocrystals. Science Reports, 6:29442, 2016.
    [57] G. Yumoto, H. Tahara, T. Kawawaki, M. Saruyama, R. Sato, T. Teranishi, and Y. Kanemitsu. Hot biexciton effect on optical gain in CsPbI3 Perovskite nanocrystals. The Journal of Physical Chemistry Letters, 9(9):2222–2228, 2018.
    [58] B. Li, H. Huang, G. Zhang, C. Yang, W. Guo, R. Chen, C. Qin, Y. Gao, V. P. Biju, A. L. Rogach, L. Xiao, and S. Jia. Excitons and biexciton dynamics in single CsPbBr3 Perovskite quantum dots. The Journal of Physical Chemistry Letters, 9(24):6934–6940, 2018.
    [59] M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, J. L. Lyons, T. Stoferle, R. F. Mahrt, M. V.
    Kovalenko, D. J. Norris, G. Raino, and A. L. Efros. Bright triplet excitons in Caesium Lead Halide Perovskites. Nature, 553(7687):189–193, 2018.
    [60] Y. Wang, X. M. Li, X. Zhao, L. Xiao, H. B. Zeng, and H. D. Sun. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from All-Inorganic Perovskite nanocrystals. Nano Letters, 16(1):448–453, 2016.
    [61] B. Tang, L. Sun, W. Zheng, H. Dong, B. Zhao, Q. Si, X. Wang, X. Jiang, A. Pan, and L. Zhang. Ultrahigh quality upconverted single-mode lasing in Cesium Lead Bromide
    spherical microcavity. Advanced Optical Materials, 6(20), 2018.
    [62] J. Z. Li, H. X. Dong, B. Xu, S. F. Zhang, Z. P. Cai, J. Wang, and L. Zhang. CsPbBr3 Perovskite quantum dots: saturable absorption properties and passively q-switched visible lasers. Photonics Research, 5(5):457–460, 2017.
    [63] A. Einstein. Zur Quantentheorie der Strahlung. Phys. Z., 18:121–128, 1917.
    [64] J. Fu, Q. Xu, G. Han, B. Wu, C. H. A. Huan, M. L. Leek, and T. C. Sum. Hot carrier cooling mechanisms in Halide Perovskites. Nature Communications, 8(1):1300, 2017.
    [65] A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X. Y. Zhu. How lasing happens in CsPbBr3 Perovskite nanowires. Nature Communications, 10(1):265, 2019.
    [66] E. Hendry, M. Koeberg, and M. Bonn. Exciton and electron-hole plasma formation dynamics in ZnO. Physical Review B, 76:045214, Jul 2007.
    [67] G. A. Thomas and T. M. Rice. Trions, molecules and excitons above the Mott density in Ge. Solid State Communications, 23(6):359–363, 1977.
    [68] V. S. Ilchenko and A. B. Matsko. Optical resonators with whispering-gallery modes-part ii: applications. IEEE Journal of Selected Topics in Quantum Electronics, 12(1):15–32, 2006.
    [69] Y. Y. Wang, C. X. Xu, M. M. Jiang, J. T. Li, J. Dai, J. F. Lu, and P. L. Li. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect. Nanoscale, 8:16631–16639, 2016.
    [70] E. M. Purcell, H. C. Torrey, and R. V. Pound. Resonance absorption by nuclear magnetic moments in a solid. Physical Review, 69:37–38, Jan 1946.
    [71] E. M. Purcell. Spontaneous Emission Probabilities at Radio Frequencies, pages 839–839. Springer US, Boston, MA, 1995.
    [72] B. Romeira and A. Fiore. Purcell effect in the stimulated and spontaneous emission rates of nanoscale semiconductor lasers. IEEE Journal of Quantum Electronics, 54(2):12, 2018.
    [73] K. Nozaki, S. Kita, and T. Baba. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Optics Express, 15(12):7506–7514, 2007.
    [74] L. Reeves, Y. Wang, and T. F. Krauss. 2D material microcavity light emitters: To lase or not to lase? Advanced Optical Materials, 6(19), 2018.
    [75] R. J. Ram, E. Goobar, M. G. Peters, L. A. Coldren, and J. E. Bowers. Spontaneous emission factor in post microcavity lasers. IEEE Photonics Technology Letters, 8(5):599–601, 1996.
    [76] W. L. Bragg. The diffraction of short electromagnetic waves by a crystal. Scientia, 23(45):153, 1929.
    [77] Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Sajou, K. Inoue, Y. Narukawa, T. Mukai, and Sg. Fujita. Radiative and nonradiative recombination processes in GaN-based semiconductors. Physica Status Solidi (A), 183(1):41–50, 2001.
    [78] X. Zhang, B. Xu, J. Zhang, Y. Gao, Y. Zheng, K. Wang, and X. W. Sun. All-Inorganic Perovskite nanocrystals for high-efficiency light emitting diodes: Dual-phase CsPbBr3-CsPb2Br5 composites. Advanced Functional Materials, 26(25):4595–4600, 2016.
    [79] H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang,and Z. Ye. Exciton localization in solution-processed Organolead Trihalide Perovskites.Nature Communications, 7:10896, 2016.
    [80] T. Schmidt, K. Lischka, and W. Zulehner. Excitation-power dependence of the nearband-edge photoluminescence of semiconductors. Physical Review B, 45(16):8989-8994, 1992.
    [81] H. H. Fang, S. Adjokatse, S. Shao, J. Even, and M. A. Loi. Long-lived hot-carrier light emission and large blue shift in Formamidinium Tin Triiodide Perovskites. Nature Communications, 9(1):243, 2018.
    [82] Y. Z. Huang, Z. Pan, and R. H. Wu. Analysis of the optical confinement factor in semiconductor lasers. Journal of Applied Physics, 79(8), 1996.
    [83] A. K. Bhowmik. Polygonal optical cavities. Applied Optics, 39(18):3071–3075, 2000.
    [84] P. Qiao, C. Y. Lu, D. Bimberg, and S. L. Chuang. Theory and experiment of submonolayer quantum-dot metal-cavity surface-emitting microlasers. Optics Express, 21(25):30336–49, 2013.

    下載圖示 校內:2024-09-15公開
    校外:2024-10-03公開
    QR CODE