簡易檢索 / 詳目顯示

研究生: 張彥松
Zhang, Yan-Song
論文名稱: 液晶化合物之合成、物性探討及其在光子晶體薄膜,場色序式顯示器和彈性體驅動器之應用研究
Synthesis and Characterization of Liquid Crystal Compounds and Their Applications in Photonic Films, Field-Sequential Color Displays and Elastomer Actuators
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 123
中文關鍵詞: 自組裝光子晶體膽固醇液晶手性近晶相C液晶彈性體
外文關鍵詞: self-assembly, photonic, cholesteric liquid crystals, chiral smectic C, liquid crystal elastomers
相關次數: 點閱:72下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液晶是一種獨特的自組裝動態功能軟性材料,對於外加刺激如溫度及光呈現高度敏感性。正如其名所示,液晶存在於傳統液體和固態晶體之間的灰色區域。液晶可以像液體一樣流動,但其分子可以像晶體一樣取向排列,並具有特殊的光軸。基於這些特殊的物理性質,液晶材料可應用於不同领域。本研究合成一系列不同相態的新穎性自組裝液晶材料,對於實驗中所合成的材料,利用紅外光光譜儀(FT-IR)、核磁共振光譜儀(1H-NMR)來鑑定其分子化學結構。而各功能性材料的熱性質及光學性質則利用差示掃描量熱卡量計(DSC)、紫外光-可見光光譜儀(UV-Vis)、X-ray繞射分析儀(XRD)、偏光顯微鏡(POM)、反射式光譜儀及光電設備來分析。光子晶體和網狀高分子聚合物所形成微結構的型態,則藉由掃描式電子顯微鏡(SEM)觀察。
    據我們所知,膽固醇液晶的形成是將手性分子摻混於向列型液晶中,利用手性分子來誘導出膽固醇超螺旋結構。在本研究的第一部份,使用非手性且不具液晶相之雙官能性單體BAHB與膽固醇型液晶均勻混和,利用多次梯度光聚合法,成功製備出具有膽固醇螺旋結構的寬波光子晶體薄膜。通過調節UV光源與液晶盒之間的距離控制紫外光強度梯度,從而影響高分子聚合速度導致形成不同螺距的螺旋結構。在這項研究中,將傳統固定UV光強度聚合法與多次梯度曝光聚合法比較,即使對於各項同性材料,經過7次梯度曝光聚合,可以複印出更寬的布拉格反射帶波,比原有反射波寬提升70%。若進一步將不同螺距的薄膜堆疊,則可以反射480-680 nm的可見光,此薄膜可被應用於液晶顯示器中的增亮膜。
    在第二部分研究中,為了進一步提高液晶顯示器的亮度,本研究設計了一種無彩色濾光片的高透光場色序式液晶顯示器。本研究合成了一系列分子末端具有非手性三硅氧烷和手性側鏈的低相變溫度、快速應答的近晶C (SmC*) 相液晶材料。所有合成之液晶材料利用差示掃描量熱卡量計 (DSC)、偏光顯微鏡 (POM)、廣角X-ray繞射分析儀 (WAXS) 及其他光電設備來分析,並與市售液晶材料的光電特性進行比對。結果顯示,在施加10V/um的電場時,顯示器應答速度為0.3 ms,每幀像素的顯示速率可高達500 Hz電頻的LED三色背光驅動。 所合成的鐵電性液晶,在室溫下可作為單一材料的場色序式顯示器設計。
    第三部分中,我們研究了一種將光能轉化機械運動的仿生材料。這種模擬含羞草的液晶薄膜,是基於液晶彈性體和光致異構化偶氮化合物所設計,同時具有橡膠般的彈性及液晶高序的排列特性。利用梯度光聚合法,控制液晶彈性體的彎曲方向。與自然界的含羞草類似,藉由摻混光敏性偶氮材料在具有鬆散交聯網格的液晶彈性體薄膜,經由光照後,液晶彈性體產生可逆式光化學反應,從而改變液晶高分子微觀相態造成巨觀薄膜形變。梯度聚合提供了一種新的控制薄膜彎曲方向的方法。這種人造含羞草液晶彈性體薄膜,可有效的將光化學能轉換為機械能,未來可被應用於微型機器人或微型機械的製造及應用。

    Liquid crystals (LCs) are unique self-assembled dynamic functional soft matters which exhibit extreme sensitivity to external perturbations such as temperature and photo-irradiation. As their name suggests, LCs inhabit the gray area between conventional liquids and solid crystals. For instance, liquid crystal have long range orientational order, typically of the unique axes that flow like a liquid, but its molecules may be oriented in a crystal-like way. Many applications of liquid crystals are based on the unique physical properties. In this research work, a series of novel self-assembed materials based on different liquid crystal phases were synthesized. The chemical structures of the synthesized compounds were identified using FT-IR and 1H-NMR. The characterizations of thermal and optical properties of these functional materials were analyzed using DSC, UV-Vis, XRD, POM, reflection probe and electro-optical measurements. The morphologies of the synthesized photonic film and polymer networks were investigated using SEM analysis.
    To the best of knowledge, the helical superstructure of cholesteric liquid crystals can be induced by the chiral molecules. In the first part, a structured broad-band photonic film was fabricated by a novel method using multiple gradient UV-induced polymerization in the presence of cholesteric liquid crystals (CLCs). The polymer template was synthesized by photopolymerization of an achiral difunctional monomer BAHB, 4,4’-bis[6-(acryloyloxy)-hexyloxy] biphenyl. Imprinting and broadening of the reflection band of chiral nematic mesophase cells were achieved via controlled UV polymerization. The intensity gradient of UV light was modified by the distance between UV lamp and sample cell, which affects the polymerization rate and leads to the formation of imprinted helical constructions with different pitches. In this study, a comparison of new design process with traditional UV polymerization process was carried out. After seven cycles of gradient UV polymerization, the imprinted photonic construction exhibited a broadened reflection band of Bragg reflection, even for isotropic materials. Because of this, the reflection bandwidth showed a 70% improvement. Additionally, two stacked imprinted cells with different pitches can reflect incident light with a bandwidth over the visible wavelength range of 480-680 nm provides an opportunity to use for brightness enhancement film (BEF) in liquid crystal displays.
    In addition, to further increase the brightness of the LCD, a high optical throughput technique without color filters called field-sequential color (FSC) method has been investigated. A series of low transition temperature and fast response chiral smectic C (SmC*) liquid crystals was designed and synthesized. The phase transition behaviors and electro-optical properties of the synthesized compounds were investigated and compared with reported values. The ferroelectric phase of the liquid crystals were characterized by means of DSC, POM, wide-angle X-ray scattering (WAXS) and electro-optical measurements. The wide SmC* phase was achieved via the induction of achiral trisiloxane and a chiral methyl-lateral substituent onto the terminuses of the molecules. A fast response time of 0.3 ms in an electric field of 10 V/μm provides an opportunity to use the synthesized materials for field-sequential color liquid crystal displays (FSCLCD). A FSCLCD sample cell was fabricated using the synthesized ferroelectric LCs via a backlight of RGB LEDs. A color frame frequency of more than 500 Hz (i.e., a frame frequency more than 166 Hz) was achieved. As a single material LCD cell, the synthesized ferroelectric liquid crystals showed great performances at room temperature.
    In third part, we demonstrate a biomimetic soft material that uses light to trigger mechanical motion. This light sensitive mimosa-like film was designed based on liquid-crystal elastomers (LCEs) and photoisomerizable azo compounds, which combine rubber elasticity with the orientational order of liquid crystals. To control the bending direction, a predesigned UV-induced gradient polymerization was used. Similar to mimosas, the fabricated films achieved stimuli-responsive actuation, exhibiting shape deformation upon light illumination. Light-responsive LCEs comprise a loosely crosslinked network of liquid-crystalline moieties and a light-sensitive doped azo dye. The elastic network undergoes reversible shape changes via photochemical trans-cis isomerization in response to a stimulus. This study explores a new way to fabricate films that can bend in controlled directions during light irradiation. This mimosa-mimetic film is expected to be used for applications in microrobotics and micromachinery. Effective photomechanical transition via the fabricated LCE films is expected.

    Contents ABSTRACT I 摘要 III ACKNOWENLEDGEMENTS V CONTENTS VII LIST OF SCHEMES X LIST OF TABLES XI LIST OF FIGURES XII CHAPTER 1 GENERAL INTRODUCTION 1 1-1 Preface 1 1-2 Research Motivations 3 1-3 References 4 CHAPTER 2 REVIEW AND THEORETICAL BACKGROUND 7 2-1 Introduction of Liquid Crystals 7 2-2 Classification of Liquid Crystals 9 2-2-1 Nematic Liquid Crystal Phase 10 2-2-2 Smectic Liquid Crystal Phase 13 2-2-3 Cholesteric Liquid Crystal Phase 18 2-2-4 Discotic Liquid Crystal Phase 21 2-2-5 Lyotropic Liquid Crystals 22 2-3 Anisotropic Physical Properties of Liquid Crystals 24 2-4 Polymer Stabilized Cholesteric Texture 28 2-5 Introduction of Photopolymerization Reaction 35 2-6 Introduction of Photochromic Materials 36 2-7 Liquid Crystal Elastomers 40 2-7-1 Termal Stimuli for Elastomer Actuation 44 2-7-2 Light Driven Stimuli Elastomer Actuation 45 2-7-3 Humidity Driven Stimuli Elastomer Actuation 46 2-8 References 46 CHAPTER 3 FABRICATION AND OPTICAL CHARACTERIZATION OF IMPRINTED BROAD-BAND PHOTONIC FILMS VIA MULTIPLE GRADIENT UV PHOTOPOLYMERIZATION 53 3-1 Introduction 53 3-2 Experimental Section 54 3-2-1 Materials 54 3-2-2 Synthesis of monomer BAHB 55 3-2-3 Fabrication of Sample Cells 57 3-2-4 Fabrication of the Imprinted Photonic Network 57 3-2-5 Preparation of the Broad-band Reflection Device 59 3-2-6 Measurements 59 3-3 Results and Discussion 60 3-3-1 Results of Synthesis of Monomer BAHB 60 3-3-2 Chemical Structure Analysis of CLC-imprinted Polymer Networks 62 3-3-3 Multiple Gradient UV-induced Polymerization 63 3-3-4 Comparison of the Normal Process and Gradient Process 66 3-3-5 Energy Effects on the UV Polymerization Imprinted Cell 67 3-3-6 Optical Characterization of the Stacked Cell 69 3-4 Summary 70 3-5 Reference 71 CHAPTER 4 SYNTHESIS OF PREDESIGNED FERROELECTRIC LIQUID CRYSTALS AND THEIR APPLICATIONS IN FIELD-SEQUENTIAL COLOR DISPLAYS 74 4-1 Introduction 74 4-2 Experimental Section 76 4-2-1 Materials 76 4-2-2 Synthesis of 3a-3d, 4a and 4b 76 4-2-3 Analysis Apparatus 78 4-3 Results and Discussion 79 4-3-1 Results of Synthesis Compounds 79 4-3-2 Mesophase Behavior 86 4-3-3 Ferroelectric Liquid Crystal Properties 89 4-3-4 Field-Sequential Color 94 4-4 Summary 98 4-5 Reference 98 CHAPTER 5 MIMOSA-MIMETIC LIQUID-CRYSTAL ELASTOMERS BASED ON PHOTOSENSITIVE AZO DERIVATIVES SYNTHESIZED VIA A CONTROLLED GRADIENT POLYMERIZATION 102 5-1 Introduction 102 5-2 Experimental Section 104 5-2-1 Materials 104 5-2-2 Synthesis of Chemicals 104 5-2-3 Fabrication of Sample Cells 105 5-2-4 Instruments 107 5-3 Results and Discussion 107 5-3-1 Results of Synthesis of AZO Dye 107 5-3-2 Liquid Crystal Elastomers Preparation 108 5-3-3 Gradient Polymerization 109 5-3-4 Light-Sensitive Mimosa 111 5-4 Summary 116 5-5 Reference 117 CHAPTER 6 CONCLUSIONS 119 APPENDIX 121

    chapter 1
    [1] F. Reinitzer, Monatsh. 9, 421 (1888).
    [2] O. Lehmann. Z. Phys. Chem. 4, 462 (1889).
    [3] J. A. Castellano, Liquid gold: the story of liquid crystal displays and the creation of an industry, World Scientific, SG 2005.
    [4] J. A. Castellano, Handbook of display technology, Elsevier, CA, USA 2012.
    [5] D. Dunmur, T. Sluckin, Soap, science, and flat-screen TVs: a history of liquid crystals, Oxford University Press, OX, UK 2012.
    [6] H. S. Kwok, S. Naemura, H. L. Ong, Progress in Liquid Crystal Science and Technology: In Honor of Shunsuke Kobayashi's 80th Birthday (Vol. 4), World Scientific, SG 2013.
    [7] W. A. Freeman, Acta. Crystallogr. B, 40, 382 (1984).
    [8] V. Borovkov, Symmetry, 6, 256 (2014).
    [9] A. Ferrarini, S. Pieraccini, S. Masiero, G. P. Spada, Beilstein J. Org. Chem., 5, 50 (2009).
    [10] E. Yablonovitch, Physical review letters, 58, 2059 (1987).
    [11] S. John, Physical review letters, 58, 2486 (1987).
    [12] S. G. J. John, D.Joannopoulos, J. N. Winn, R. D. Meade, Photonic crystals: molding the flow of light. Princeton University Press, Princeton, NJ, (2008).
    [13] J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, Science, 282, 1476 (1998).
    [14] P. Russell, Science, 299, 358 (2003).
    [15] J. C. Knight, Nature, 424, 847 (2003).
    [16] H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J-K. Yang, J.-H. Baek, S.-B. Kim, Y.-H. Lee, Science, 305, 1444 (2004).
    [17] H. Altug, D. Englund, J.Vučković, Nature physics, 2, 484 (2006).
    [18] A. Rahmani, P. C. Chaumet, Optics express, 14, 6353 (2006).
    [19] N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, R. Houdré, Physical review letters, 110, 123601 (2013).
    [20] K. Lee, S. A. Asher, Journal of the American Chemical Society, 122, 9534 (2000).
    [21] C. Fenzl, T. Hirsch, O. S.Wolfbeis, Angewandte Chemie International Edition, 53, 3318 (2014)
    [22] K. Aoki. H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. shinya, Y. Aoyagi, Nature materials, 2, 117 (2003).
    [23] K. Ishizaki, S. Noda, Nature, 460, 367 (2009).
    [24] Y. A. Vlasov, X. Z. Bo, J. C. Sturm, D. J. Norris, Nature, 414, 289 (2001).
    [25] M. Ravnik, G. P. Alexander, J. M. Yeomans, S. Žumer, Proceedings of the National Academy of Sciences, 108, 5188 (2011)
    [26] M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, Nature, 404, 53 (2000).
    [27] G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, M. Wegener, Advanced Functional Materials, 20, 1038 (2010).
    [28] P. Etchegoin, Physical Review E, 62, 1435 (2000).
    [29] W. Cao, A. Munoz, P. Palffy-Muhoray, B. Taheri, Nature materials, 1, 111 (2002).
    [30] F. Castles, F. V. Day, S. M. Morris, D-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, Nature materials, 11, 599 (2012).
    [31] T. Ikeda, J. I. Mamiya, Y. Yu, Angewandte Chemie International Edition, 46, 506 (2007).
    [32] R. S. Kularatne, H. Kim, J. M. Boothby, T. H. Ware, Journal of Polymer Science Part B: Polymer Physics, 55, 395 (2017).
    chapter 2
    [1] P. J. Collings, M. Hird, Introduction to Liquid Crystals Chemistry and Physics, Taylor & Francis, London (1997).
    [2] I. Dierking, Textures of Liquid Crystals, Wiley-VCH, Weinheim (2003).
    [3] X. J. Wang, Q. F. Zhou, Liquid Crystalline Polymers, World Scientific, Singapore (2004).
    [4] B. Bahadur, Liquid Crystal Applications and Uses, World Scientific Pub. Co. Inc., Singapore (1991).
    [5] F. Reinitzer, Monatsh. Chem., 9, 421 (1888).
    [6] O. Lehmann, Z. Phys. Chem., 4, 462 (1989).
    [7] O. Lehmann, Ann. Physik., 25, 852 (1908).
    [8] O. Lehmann, Ann. Physik., 27, 1099 (1908).
    [9] V. E. Bottom, A History Of The Quartz Crystal Industry In The USA, Proceedings of the 35th Annual Frequency Control Symposium, pp. 3-12 (1981).
    [10] V. Vill, “LiqCryst database” (http://www.lci-publisher.com/liqcryst.html).
    [11] S. Kumar, Liquid Crystals: Experimental Study of Physical Properties and Phase Transitions, Cambridge University Press, New York (2001).
    [12] P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments, Taylor & Francis, Boca Raton (2005).
    [13] A. Jakil, A. Saupe, One- and Two-Dimensional Fluids: Properties of Smectic, Lamellar and Columnar Liquid Crystals, Taylor & Francis, Boca Raton (2006).
    [14] A. M. Donald, A. H. Windle, S. Hanna, Liquid Crystalline Polymers, Cambridge University Press, New York (2001).
    [15] J. Nehring, A. Saupe, J. Chem. Soc., Faraday Trans II, 68, 1 (1972).
    [16] L. Li, S. Zhang, Z. Li, Polymer, 45, 2309 (2004).
    [17] P. Sungsittayakorn, P. Limcharone, I. M. Tang, O. Phaovibul, Mol. Crystal Liq. Cryst., 71, 293 (1981).
    [18] P. C. Yang, J. H. Liu, J. Appl. Polym. Sci., 91, 3693 (2004).
    [19] P. C. Yang, Y. K. Wang, C. C. Wang, J. H. Liu, Liq. Cryst., 33, 237 (2006).
    [20] R. Kadua, V. K. Singha,, S. K. Vermaa, P. Raghavaiahb, M. M. Shaikhc, J. Mol. Struct., 1033, 298 (2013).
    [21] D. de Rossi, J. Robert, J. Appl. Phys., 49, 1139 (1978).
    [22] M. Schadt, Jpn. J. Appl. Phys., 48, 03B001 (2009).
    [23] H. Baumgärtel, E. U. Franck, W. Grünbein, Topics in Physical Chemistry, Springer, New York (1994).
    [24] S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals, Wiley-VCH, New York (1999).
    [25] B. Y. Zhang, J. S. Hu, Y. G. Jia, B. G. Du, Macromol. Chem. Phys., 204, 2123 (2003).
    [26] T. Mukai, M. Yoshio, T. Kato, M. Yoshizawa, H. Ohno, Chem. Commun., 1333 (2005).
    [27] M. Yoshio, T. Mukai, K. Kanie, M. Yoshizawa, H. Ohno, T. Kato, Adv. Mater., 14, 351 (2002).
    [28] K. Hoshino, K. Kanie, T. Ohtake, T. Mukai, M. Yoshizawa, S. Ujiie, H. Ohno, T. Kato, Macromol. Chem. Phys., 203, 1547 (2002).
    [29] Y. Iinuma, K. Kishimoto, Y. Sagara, Masafumi Yoshio, T. Mukai, I. Kobayashi, H. Ohno, T. Kato, Macromolecules, 40, 4874 (2007).
    [30] T. Kato, Science, 295, 2414 (2002).
    [31] K. Kishimoto, M. Yoshio, T. Mukai, M. Yoshizawa, H. Ohno, T. Kato, J. Am. Chem. Soc., 125, 3196 (2003).
    [32] Y. Lu, J. Guo, H. Wang, J. Wei, Adv. Cond. Matter Phys., 2012, 1, (2012).
    [33] N. Tamaoki, Adv. Mater., 13, 1135 (2001).
    [34] A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, L. Oriol, Adv. Mater., 16, 791 (2004).
    [35] G. Chilaya, G. Hauck, H. D. Koswig, D. Sikharulidze, J. Appl. Phys., 80, 1907 (1996).
    [36] J. Schmidtke, S. Kniesel, H. Finkelmann, Macromolecules, 38, 1357 (2005).
    [37] D. S. Parmar, J. J. Singh, A. Eftekhari, Rev. Sci. Instrum., 63, 225 (1992).
    [38] B. I. Senyuk, I. I. Smalyukh, O. D. Tirrell, Opt. Lett., 30, 349 (2005).
    [39] S. W. Kang, S. Sprunt, L. C. Chien, Chem. Mater., 18, 4436 (2006).
    [40] Y. Li, Y. Iwakura, K. Nakayama, H. Shimizu, Compos. Sci. Technol., 67, 2886 (2007).
    [41] P. V. Shibaev, J. Madsen, A. Z. Genack, Chem. Mater., 16, 1397 (2004).
    [42] V. A. Mallia, N. Tamaoki, Chem. Mater., 15, 3237 (2003).
    [43] H. Mori, P. J. Bos, Jpn. J. Appl. Phys., 38, 2837 (1999).
    [44] S. H. Hwang, Y. J. Lim, M. H. Lee, S. H. Lee, G. D. Lee, H. Kang, K. J. Kim, H. C. Choi, Curr. Appl. Phys., 7, 690 (2007).
    [45] N. S. Cameron, M. K. Corbierre, A. Eisenberg, Can. J. Chem., 77, 1311 (1999).
    [46] J. Barbera, A. C. Garces, N. Jayaraman, A. Omenat, J. L. Serrano, J. Fraser Stoddart, Adv. Mater., 13, 175 (2001).
    [47] H. Ringsdorf, B. Schlarb, J. Venzmer, Angew Chem. Int. Ed. Engl., 27, 113 (1988).
    [48] C. K. Ober, G. Wegner, Adv. Mater., 9, 17 (1997).
    [49] R. Negrini, R. Mezzenga, Langmuir, 27, 5296 (2011).
    [50] R. C. Smith, W. M. Fischer, D. L. Gin, J. Am. Chem. Soc., 119, 4092 (1997).
    [51] P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, Oxford University Press, New York (1993).
    [52] E. B. Priestley, P. J. Wojtowicz, P. Sheng, Introduction to Liquid Crystals, Princeton, New Jersey (1975).
    [53] N. Tamaoki, Adv. Mater., 13, 1135 (2001).
    [54] H. S. Kitzerow, P. P. Crooker, Liq. Cryst., 13, 31 (1993).
    [55] A. Khan, I. Shiyanovskaya, T. Schneider, E. Montbach, D. J. Davis, N. Miller, D. Marhefka, T. Ernst, F. Nicholson, J. W. Doane, J. Soc. Inf. Display, 15, 9 (2007).
    [56] M. Goscianski, L. Leger, A. Mircea-Roussel, J. Phys. (Paris), 36, 313 (1975).
    [57] Y. Kim, J. Francl, B. Taheri, J. L. West, Appl. Phys. Lett., 72, 2253 (1998).
    [58] I. Dierking, L. L. Kosbar, A. C. Lowe, G. A. Held, J. Appl. Phys., 81, 3007 (1997).
    [59] J.-H. Liu, H.-J. Hung, D.-S. Wu, S.-M. Hong, A. Y. G. Fu, J. Appl. Polym. Sci., 98, 88 (2005).
    [60] Y. K. Fung, D. K. Yang, Y. Sun, L. C. Chien, S. Žumer, J. W. Doane, Liq. Cryst., 19, 797 (1995).
    [61] R. Q. Ma, D. K. Yang, Phys. Rev. E, 61, 1567 (2000).
    [62] Y. K. Fung, A. Borstnik, S. Zumer, D. K. Yang, J. W. Doane, Phys. Rev. E, 55, 1637 (1997).
    [63] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, Nat. Mater., 1, 111 (2002).
    [64] M. Petit, A. Daoudi, Phys. Rev. E, 74, 061707 (2006).
    [65] H. H. Liang, C. C. Wu, P. H. Wang, J. Y. Lee, Opt. Mater., 33, 1195 (2011).
    [66] D. K. Yang, L. C. Chien, J. W. Doane, Appl. Phys. Lett., 60, 3102 (1992).
    [67] C. Y. Huang, K. Y. Fu, K. Y. Lo, M. S. Tsai, Opt. Express, 11, 560 (2003).
    [68] H. Ren, S. T. Wu, J. Appl. Phys., 92, 797 (2002).
    [69] H. Guillard, P. Sixou, L. Reboul and A. Perichaud, Polymer, 42, 9753 (2001).
    [70] I. Dierking, L. L. Kosbar, A. C. Lowe, G. A. Held, Liq. Cryst., 24, 397 (1998).
    [71] Y.-H. Lin, H. Ren, Y.-H. Fan, Y.-H., Wu, S.-T. Wu, J. Appl. Phys, 98, 043112 (2005).
    [72] D. K. Yang, J. L. West, L. C. Chien and J. W. Doane, J. Appl. Phys., 76, 1331 (1994).
    [73] R. Bao, C. M. Liu, D. K. Yang, Appl. Phys. Express, 2, 112401-1 (2009).
    [74] J. Ma, L. Shi, D. K. Yang, Appl. Phys. Express, 3, 021702-1 (2010).
    [75] F. Vicentini, J. Cho, L. C. Chien, Liq. Cryst., 24, 483 (1998).
    [76] M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, T. J. Bunning, Chem. Commun., 47, 505 (2011).
    [77] J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang, J. Wei, J. Mater. Chem., 20, 4094 (2010).
    [78] C. E. Hoyle, J. F. Kinstle, Radiation Curing of Polymeric Materials, American Chemical Society, Washington (1990).
    [79] J. P. Fouassier, Photoinitiation, Photopolymerization, Photocuring: Fundamentals and Applications, Carl Hanser GmbH, Munich (1995).
    [80] S. Davidson, Exploring the Science, Technology and Application of UV and EB Curing, SITA Technology Ltd., London (1999).
    [81] J. V. Crivello, K. Dietliker, Surface Coatings Technology Series, Wiley, New York (1999).
    [82] K. Dietliker, A Compilation of Photoinitiators Commercially Available for UV Today, SITATechnology Ltd., London (2002).
    [83] K. D. Belfied, J. V. Crivello, Photoinitiated Polymerization, American Chemical Society, Washington (2003).
    [84] J. P. Fouassier, X. Allonas, Basics of Photopolymerization Reactions, Research Signpost, Trivandrum (2010).
    [85] W. A. Green, Industrial Photoinitiators, CRC Press, Boca Raton (2010).
    [86] M. K. Mishra, Y. Yagci, Handbook of Vinyl Polymers, CRC Press, Boca Raton (2009).
    [87] J. P. Fouassier, J. Lalevée, Photoinitiators for Polymer Synthesis: Scope, Reactivity and Efficiency, Wiley VCH, Weinheim (2012).
    [88] C. E. Corcione, A. Previderio, M. Frigione, Thermochim. Acta, 509, 56 (2010).
    [89] C. E. Corcione, A. Greco, A. Maffezzoli, J. Appl. Polym. Sci., 92, 3484 (2004).
    [90] C. E. Corcione, A. Greco, A. Maffezzoli, Polymer, 46, 8018 (2005).
    [91] C. E. Corcione, A. Greco, A. Maffezzoli, Polym. Eng. Sci., 46, 493 (2006).
    [92] A. Greco, C. E. Corcione, A. Cavallo, A. Maffezzoli, J. Appl. Polym. Sci., 122, 942 (2011).
    [93] C. E. Corcione, M. Frigione, Thermochim. Acta, 534, 21 (2012).
    [94] J. A. Pojman, J. Willis, D. Fortenberry, V. Ilyashenko, A. M. Khan, J. Polym. Sci. PartA: Polym. Chem., 33, 643 (1995).
    [95] J. Fritzsche, C. Rendus, Acad. Sci., 69, 1035 (1867).
    [96] H. Bouas-Laurent, H. Dürr, Pure Appl. Chem., 73, 639 (2001).
    [97] V. A. Barachevskii, G. I. Lashkov, V. A. Tsekhomskii, Photochromism and Its Application, Izd. Khimiya, Moscow (1977).
    [98] D. Fanghänel, G. Timpe, V. Orthman, Organic Photochromes, Consultants Bureau, New York (1990).
    [99] G. V. Oshovsky, D. N. Reinhoudt, W. Verboom, Angew. Chem. Int. Ed., 46, 2366 (2007).
    [100] R. Zentel, Adv. Mater. 1, 321 (1989).
    [101] S. M. Kelly, J. Mater. Chem. 5, 2047 (1995).
    [102] M. Warner, E. M. Terentjev, Prog. Polym. Sci. 21, 853 (1996).
    [103] J. P. Cotton, F. Hardouin, Prog. Polym. Sci. 22, 795 (1997).
    [104] E. M. Terentjev, J. Phys. Condens. Matter. 11, R239 (1999).
    [105] P. Xie, R. Zhang, J. Mater. Chem. 15, 2529 (2005).
    [106] H. R. Brand, H. Finkelmann in Handbook of Liquid Crystals, Wiley-VCH, Weinheim, 1998.
    [107] M. Warner, E. M. Terentjev, Liquid crystal elastomers, Oxford University Press, Oxford, UK, 2003.
    [108] H. Finkelmann, G. Rehage, Adv. Polym. Sci. 60/61, 99 (1984).
    [109] J. KJpfer, E. Nishikawa, H. Finkelmann, Polym. Adv. Technol. 5, 110 (1994).
    [110] P. -G. de Gennes, C. R. Seances, Acad. Sci. Ser. B, 281, 101 (1975).
    [111] H. Finkelmann, H.-J. Kock, G. Rehage, Makromol. Chem. Rapid Commun. 2, 317 (1981).
    [112] J. KJpfer, H. Finkelmann, Macromol. Chem. Phys. 195, 1353 (1994).
    [113] R. Zentel, G. Reckert, Makromol. Chem. 187, 1915 (1986).
    [114] R. Zentel, M. Benalia, Makromol. Chem. 188, 665 (1987).
    [115] D. J. Broer, H. Finkelmann, K. Kondo, Makromol. Chem. 189, 185 (1988).
    [116] J. KJpfer, H. Finkelmann, Makromol. Chem. Rapid Commun. 12, 717 (1991).
    [117] I. Kundler, H. Finkelmann, Macromol. Chem. Phys. 199, 677 (1998).
    [118] M. Tammer, J. Li, A. Komp, H. Finkelmann, F. Kremer, Macromol. Chem. Phys. 206, 709 (2005).
    [119] H. Finkelmann, S. T. Kim, A. MuToz, P. Palffy-Muhoray, B. Taheri, Adv. Mater. 13, 1069 (2001).
    [120] X.-Z. He, B.-Y. Zhang, F.-B. Meng, J.-R. Lin, J. Appl. Polym. Sci. 96, 1204 (2005).
    [121] F.-B. Meng, B.-Y. Zhang, W.-Q. Xiao, T.-X. Hu, J. Appl. Polym. Sci. 96, 625 (2005).
    [122] M. Brehmer, R. Zentel, Macromol. Chem. Phys. 195, 1891 (1994).
    [123] E. Nishikawa, H. Finkelmann, Macromol. Chem. Phys. 198, 2531 (1997).
    [124] E. Gebhard, R. Zentel, Macromol. Rapid Commun. 19, 341 (1998).
    [125] E. Nishikawa, H. Finkelmann, Macromol. Chem. Phys. 200, 312 (1999).
    [126] H. M. Brodowsky, U.-C. Boehnke, F. Kremer, E. Gebhard, R. Zentel, Langmuir, 15, 274 (1999).
    [127] W. Lehmann, H. Skupin, C. Tolksdorf, E. Gebhard, R. Zentel, P. KrJger, M. LVsche, F. Kremer, Nature, 410, 447 (2001).
    [128] J. J. Zanna, P. Stein, J. D. Marty, M. Mauzac, P. Martinoty, Macromolecules, 35, 5459 (2002).
    [129] K. Hiraoka, W. Sagano, T. Nose, H. Finkelmann, Macromolecules, 38, 7352 (2005).
    [130] P. Beyer, R. Zentel, Macromol. Rapid Commun. 26, 874 (2005).
    [131] S. Disch, H. Finkelmann, H. Ringsdorf, P. Schuhmacher, Macromolecules, 28, 2424 (1995).
    [132] M.-H. Li, P. Keller, J. Yang, P.-A. Albouy, Adv. Mater. 16, 1922 (2004).
    [133] L. Cui, X. Tong, X. Yan, G. Liu, Y. Zhao, Macromolecules, 37, 7097 (2004).
    [134] G. A. Shandryuk, S. A. Kuptsov, A. M. Shatalova, N. A. Plate, R. V. Talroze, Macromolecules, 36, 3417 (2003).
    [135] T. H. Ware, M. E. McConney, J. J. Wie, V. P. Tondiglia, T. J. White, T. J. Science, 347, 982 (2015).
    [136] M. Rogóż, H. Zeng, C. Xuan, D. S. Wiersma, P. Wasylczyk, Advanced Optical Materials, 4, 1689 (2016).
    [137] Y. Liu, B. Xu, S. Sun, J. Wei, L. Wu, Y. Yu, Advanced Materials, 29, 1604792 (2017).
    chapter 3
    [1] E. Yablonovitch, Phys. Rev. Lett., 58, 2059 (1987).
    [2] S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [3] K. Yoshino, Y. Ohmori, A. Fujii, M. Ozaki, Jpn. J. Appl. Phys., Part 1., 46, 5655 (2007).
    [4] S. M. Morris, P. J. W. Hands, S. Findeisen-Tandel, R. H. Cole, T. D. Wilkinson, H. J. Coles, Opt. Express 16, 18827 (2008).
    [5] M. Ozaki, Y. Matsuhisa, H. Yoshida, R. Ozaki, A. Fujii, Phys. Status Solidi (a) 204, 3777 (2007).
    [6] T. Manabe, K. Sonoyama, Y. Takanishi, K. Ishikawaa, H. Takezoe, J. Mater. Chem. 18, 3040 (2008).
    [7] M. Mitov, N. Dessaud, Liq. Cryst. 34, 183 (2007).
    [8] W. Cao, A. Munoz, P. Palffy-Muhoray, B. Taheri, Nature Mater. 1, 111 (2002).
    [9] M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, P. Palffy-Muhoray, Appl. Phys. Lett. 85, 2691 (2004).
    [10] H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, B. Taheri, Adv. Mater. 13, 1069 (2001).
    [11] S. S. Choi, S. M. Morris, W. T. S. Huck, H. J. Coles, Adv. Mater. 21, 3915 (2009).
    [12] N. Tamaoki, Adv. Mater. 13, 1135 (2001).
    [13] A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, L. Oriol, Adv. Mater. 16, 791 (2004).
    [14] J. Guo, L. Yu, F. Liu, R. Guo, G. Ma, H. Cao, H. Yang, J. Polym. Sci., Part B: Polym. Phys. 46, 1562 (2008).
    [15] T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, Adv. Funct. Mater. 19, 3484 (2009).
    [16] P.‐C. Yang, H.‐J. Hung, D.‐J. Liaw, J.-H. Liu, Liq. Cryst. 34, 891 (2007).
    [17] S. B. Bubenhofer, E. K. Athanassiou, R. N. Grass, F. M. Koehler, M. Rossier, W. J. Stark, Nanotechnology, 20, 485302 (2009).
    [18] Y. Huang, J. Loos, Y. Q. Yang, J. Petermann, J. Polym. Sci., Part B: Polym. Phys. 36, 439 (1998).
    [19] H. Akiyama, A. Tanaka, H. Hiramatsu, J. Nagasawaa, N. Tamaoki, J. Mater. Chem. 19, 5956 (2009).
    [20] T. J. White, M. E. McConneya, T. J. Bunning, J. Mater. Chem. 20, 9832 (2010).
    [21] W. Schlichting, S. Faris, B. Fan, J. Haag, Z. Lu, S. Kane, L. Li, T. Milster H. Luo, Jpn. J. Appl. Phys., Part 1 36, 587 (1997).
    [22] V. I. Kopp, B. Fan, H. K. M. Vithana, A. Z. Genack, Opt. Lett. 23, 1707 (1998).
    [23] S. D. Jacobs, K. A. Cerqua, K. L. Marshall, A. Schmid, M. J. Guardalben, and K. J. Skerrett, J. Opt. Soc. Am. B: Opt. Phys. 5, 1962 (1988).
    [24] G. P. Crawford, S. Zumer, Liquid Crysatls in Complex Geometries: Formed by Polymer and Porous Networks, Taylor and Francis, London, UK, 1996.
    [25] J. Pinsl, C. Brauchle, H. Kreuzer, J. Mol. Electron. 3, 9 (1987).
    [26] J. Watanabe, Y. Fukuda, R. Gehani, I. Uematsu, Macromolecules, 17, 1004 (1984).
    [27] J. Watanabe, M. Goto, T. Nagase, Macromolecules, 20, 298 (1987).
    [28] J. Lub, P. van de Witte, C. Doornkamp, J.P.A. Vogels, R.T. Wegh, Adv. Mater. 15, 1420 (2003).
    [29] J. Lub, W. P. M. Nijssen, R. T. Wegh, J. P. A. Vogels, A. Ferrer, Adv. Funct. Mater. 15, 1961 (2005).
    [30] R. A. M. Hikmet, H. Kemperman, Nature, 392, 476 (1998).
    [31] J. C. Kralik, B. Fan, H. Vithana, L. Li, S. M. Faris, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 301, 249 (1997).
    [32] D. J. Broer, J. Lub, G. N. Mol, Nature, 378, 467 (1995).
    [33] D. J. Broer, G. N. Mol, J. A. M. M. V. Haaren, J. Lub, Adv. Mater. 11, 573 (1999).
    [34] R. A. M. Hikmet, H. Kemperman, Liq. Cryst. 26, 1645 (1999).
    [35] M. Mitov, N. Dessaud, Nature Mater. 5, 361 (2006).
    [36] C. Binet, M. Mitov, M. Mauzac, J. Appl. Phys. 90, 1730 (2001).
    [37] M. Mitov, E. Nouvet, N. Dessaud, Eur. Phys. J. E 15, 413 (2004).
    [38] J. Guo, J. Sun, K. Li, H. Cao, H. Yang, Liq. Cryst. 35, 87 (2008).
    [39] M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. Whitea, T. J. Bunning, Chem. Commun. 47, 505 (2011).
    [40] J.-H. Liu, H. Fang, C.-C. Chien. J. Polym. Sci., Part A: Polym. Chem. 49, 1256 (2011).
    [41] C.-C. Chien, J.-H. Liu, A. V. Emelyanenko, J. Mater. Chem. 22, 22446 (2012).
    [42] C.-C. Chien, J.-H. Liu, Macromol. Rapid. Commun. 35, 1185 (2014).
    [43] F. F. Mazda, Electronics engineer's reference book. Butterworth-Heinemann, London, UK, 2013.
    [44] D. J. Broer, I. Heynderickx, Macromolecules. 23, 2474 (1990).
    chapter 4
    [1] J. A. Castellano, Liquid gold: the story of liquid crystal displays and the creation of an industry, World Scientific, SG 2005.
    [2] J. A. Castellano, Handbook of display technology, Elsevier, CA, USA 2012.
    [3] D. Dunmur, T. Sluckin, Soap, science, and flat-screen TVs: a history of liquid crystals, Oxford University Press, OX, UK 2012.
    [4] H. S. Kwok, S. Naemura, H. L. Ong, Progress in Liquid Crystal Science and Technology: In Honor of Shunsuke Kobayashi's 80th Birthday (Vol. 4), World Scientific, SG 2013.
    [5] D. Zhao, F. Fan, J. Cheng, Y. Zhang, K. S. Wong, V. G. Chigrinov, B. Z. Tang, Adv. Opt. Mater. 3, 199 (2015).
    [6] H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, W. C. Tsai, Opt. Mater. Express, 4, 2262 (2014).
    [7] B. Bahadur, Mol. Cryst. Liq. Cryst. 109, 3 (1984).
    [8] S. T. Wu, D. K. Yang, Reflective liquid crystal displays. Wiley, Hoboken, NJ, USA 2001.
    [9] J. S. Seo, T. E. Yeom, J. H. Ko, J. Opt. Soc. Korea, 16, 151 (2012).
    [10] F. C. Lin, Y. P. Huang, H. P. D. Shieh, J. Display Technol, 6, 107 (2010).
    [11] F. Yamada, H. Nakamura, Y. Sakaguchi, Y. Taira, J. Soc. Inf. Display, 10, 81 (2002).
    [12] N. Koma, T. Uchida, J. Soc. Inf. Display, 11, 413 (2003).
    [13] F. C. Lin, Y. P. Huang, C. M. Wei, H. P. D. Shieh, J. Display Technol, 6, 98 (2010).
    [14] M. Okabe, N. Sawatari, M. Ishikawa, H. Hama, In SID Symposium Digest of Technical Papers, 1, 1084 (2005).
    [15] Y. Zhang, F. C. Lin, E. H. Langendijk, J. Soc. Inf. Display, 19, 258 (2011).
    [16] E. Pozhidaev, V. Chigrinov, A. Murauski, V. Molkin, D. Tao, H. S. Kwok, J. Soc. Inf. Display, 20, 273 (2012).
    [17] J. H. Lee, X. Zhu, S. T. Wu, J. Display Technol, 3, 2 (2007).
    [18] E. S. Ferry, Am. J. Sci. 261, 192 (1892).
    [19] V. Lapanik, V. Bezborodov, A. Minko, G. Sasnouski, W. Haase, A. Lapanik, Ferroelectrics, 344, 205 (2006).
    [20] T. Järvenpää, J. Soc. Inf. Display, 13, 139 (2005).
    [21] A. K. Srivastava, R. Manohar, Liq. Cryst. 38, 183 (2011).
    [22] R. Manohar, A. K. Misra, A. K. Srivastava, Polym. Compos. 31, 1776 (2010).
    [23] V. Lapanik, V. Bezborodov, S. Timofeev, W. Haase, Appl. Phys. Lett. 97, 251913 (2010).
    [24] N. Koma, T. Uchida, J. Soc. Inf. Display, 11, 413 (2003).
    [25] C. H. Chen, F. C. Lin, Y. T. Hsu, Y. P. Huang, H. P. D. Shieh, J. Display Technol, 5, 34 (2009).
    [26] S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, S. T. Wu, J. Display Technol, 3, 250 (2007).
    [27] R. B. Meyer, L. Liebert, L. Strzelecki, P. Keller, J. Physique Lett. 36, 69 (1975).
    [28] W. K. Robinson, C. Carboni, P. Kloess, S. P. Perkins, H. J. Coles, Liq. Cryst. 25, 301 (1998).
    [29] N. Mizoshita, T. Kato, Adv. Funct. Mater. 16, 2218 (2006).
    [30] W. K. Robinson, P. Lehmann, H. J. Coles, Mol. Cryst. Liq. Cryst. 328, 229 (1999).
    [31] A. Kaeding, P. Zugenmaier, Liq. Cryst. 25, 449 (1998).
    [32] N. A. Lockwood, J. C. Mohr,L. Ji, C. J. Murphy, S. P. Palecek, J. J. De Pablo, N. L. Abbott, Adv. Funct. Mater. 16, 618 (2006).
    [33] J. Naciri, C. Carboni, A. K. George, Liq. Cryst. 30, 219 (2003).
    [34] Y. H.Kim, D. K. Yoon, H. S. Jeong, O. D. Lavrentovich, H. T. Jung, Adv. Funct. Mater. 21, 610 (2011).
    [35] N. Olsson, B. Helgee, G. Andersson, L. Komitov, Liq. Cryst 32, 1139 (2005).
    [36] M. Svensson, B. Helgee, K. Skarp, G. Andersson, J. Mater. Chem. 8, 353 (1998).
    [37] L. Lejček, V. Novotná, M. Glogarová, Phys. Rev. E. 92, 032505 (2015).
    [38] P. Das, S. Basu, R. K. Sinha, U. Das, Chem. Phys. Lett. 410, 417 (2005).
    [39] N. Olsson, M. Schröder, S. Diele, G. Andersson, I. Dahl, B. Helgee, L. Komitov, J. Mater. Chem. 17, 2517 (2007).
    [40] J. Ruth, B. R. Ratna, J. W. Naciri, R. Shashidhar, S. K., Prasad, D. S. Rao, S. Chandrasekhar, In IS&T/SPIE's Symposium on Electronic Imaging: Science and Technology, p, 104 (1993).
    [41] P. Heinze, H. Finkelmann, Macromolecules, 43, 6655 (2010).
    [42] J. Naciri, B. R. Ratna, S. Baraltosh, P. Keller, R. Shashidhar, Macromolecules, 28, 5274 (1995).
    [43] A. Debnath, P. K. Mandal, Journal of Molecular Liquids, 221, 287 (2016).
    [44] K. Miyasato, S. Abe, H. Takezoe, A. Fukuda, E. Kuze, Jpn. J. Appl. Phys. 22, L661 (1983).
    [45] Y. Takanishi, Y. Ouchi, H. Takezoe, A. Fukuda, A. Mochizuki, M. Nakatsuka, Jpn. J. Appl. Phys 29, L984 (1990).
    [46] B. Helgee, T. Hjertberg, K. Skarp, G. Andersson, F. Gouda, Liq. Cryst. 18, 871 (1995).
    [47] Y. S. Zhang, A. V. Emelyanenko, J. H. Liu, J. Taiwan. Inst. Chem. E. 65, 444 (2016).
    [48] K. Sunohara, K. Takatoh, M. Sakamoto, Liq. Cryst. 13, 283 (1993).
    [49] J. P. Lagerwall, F. Giesselmann, M. D. Radcliffe, Phys. Rev. E. 66, 031703 (2002).
    [50] F. Giesselmann, P. Zugenmaier, I. Dierking, S. T. Lagerwall, B. Stebler, M. Kašpar, M. Glogarova, Phys. Rev. E. 60, 598 (1999).
    [51] L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Fünfschilling, M. Schadt, Liq. Cryst. 5, 1171 (1989).
    [52] L. Pelliser, M. Manceau, C. Lethiec, D. Coursault, S. Vezzoli, G. Leménager, A. Maitre, Adv. Funct. Mater. 25, 1719 (2015) .
    [53] A. Kholkin, A. Morozovska, D. Kiselev, I. Bdikin, B. Rodriguez, P. Wu, M. Kosec, Adv. Funct. Mater. 21, 1977 (2011).
    chapter 5
    [1] M. Wani, H. Zeng, A. Priimagi. Nature Commun. 8, 15546 (2017).
    [2] U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia, R. O. Ritchie, Nature Mater. 14, 23 (2015).
    [3] Y. Zhao, F. Sakai, L. Su, Y. Liu, K. Wei, G. Chen, M. Jiang, Adv. Mater. 25, 5215 (2013).
    [4] E. Morris, M. Chavez, C. Tan, Curr. Opin. Biotechnol. 39, 97 (2016).
    [5] A. Cully, J. Clune, D. Tarapore, J. -B. Mouret, Nature. 521, 503 (2015).
    [6] R. Pfeifer, M. Lungarella, F. Iida, Science. 318, 1088 (2007).
    [7] K. Y. Ma, P. Chirarattananon, S. B. Fuller, R. J. Wood, Science. 340, 603 (2013).
    [8] T. Qiu, T. -C. Lee, A. G. Mark, K. I. Morozov, R. Münster, O. Mierka, S. Turek, A. M. Leshansky, P. Fisher, Nature Commun. 5, 6119 (2014).
    [9] S. Floyd, M. Sitti, IEEE T. Robot. 24, 698 (2008).
    [10] S. A. Morin, R. F. Shepherd, S. W. Kwok, A. A. Stokes, A. Nemiroski, G. M. Whitesides, Science. 337, 828 (2012).
    [11] S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregon, B. J. Nelson, Adv. Mater. 24, 811 (2012).
    [12] S. J. Gershman, E. J. Horvitz, J. B. Tenenbaum, Science. 349, 273 (2015).
    [13] R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D. Mazzeo, X. Chen, M. Wang, G. M. Whitesides, Proceedings of the national academy of sciences, Proc. Natl. Acad. Sci. 108, 20400 (2011).
    [14] S. J. Park, M. Gazzola, K. S. Park, S. Park, V. Di Santo, E. L. Blevins, J. U. Lind, P. H. Campbell, S. Dauth, A. K. Capulli, F. S. Pasqualini, S. Ahn, A. Cho, H. Yuan, B. M. Maoz, R. Vijaykumar, J. -W. Choi, K. Deisseroth, G. V. Lauder, L. Mahadevan, K. K. Parker, Science. 353, 158 (2016).
    [15] R. A. L. Jones, Soft condensed matter, Oxford University Press, NY, USA 2002.
    [16] I. W. Hamley, Introduction to soft matter: synthetic and biological self-assembling materials, John Wiley & Sons, Hoboken, NJ, USA 2013.
    [17] N. Bassik, B. T. Abebe, K. E. Laflin, D. H. Gracias, Polym. J. 51, 6093 (2010).
    [18] T. S. Kelby, W. T. S. Huck, Macromolecules. 43, 5382 (2010).
    [19] M. Behl, M. Y. Razzaq, A. Lendlein, Adv. Mater. 22, 3388 (2010).
    [20] B. Simpson, G. Nunnery, R. Tannenbaum, K. Kalaitzidou, J. Mater. Chem. 20, 3496 (2010).
    [21] B. Ziółkowski, D. Diamond, Chem. Commun. 49, 10308 (2013).
    [22] M. Rogóż, H. Zeng, C. Xuan, D. S. Wiersma, P. Wasylczyk, Adv. Opt. Mater. 4, 1689 (2016).
    [23] T. Ikeda, J. Mamiya, Y. Yu, Angew. Chem. Int. Ed. 46, 506 (2007).
    [24] C. Ohm, M. Brehmer, R. Zentel, Adv. Mater. 22, 3366 (2010).
    [25] M.-H. Li, P. Keller, B. Li, X. Wang, M. Brunet, Adv. Mater. 15, 569 (2003).
    [26] P. H. Raven, R. F. Evert, S. E. Eichhorn, Biology of Plants, W. H. Freeman and Company, Macmillan, NY, USA 2005.
    [27] T. V. Driessche, Biol.Rhythm. Res. 31, 451 (2000).
    [28] C. L. V. Oosten, C. W. M. Bastiaansen, D. J. Broer, Nature mater. 8, 677 (2009).
    [29] M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, M. Shelley, Nature mater. 3, 307 (2004).
    [30] H. Zeng, O. M. Wani, P. Wasylczyk, A. Priimagi, Adv. Mater. 29, 1701814 (2017).
    [31] T. Kamal, S. Park, ACS Appl.Mater. Inter. 6, 18048 (2014).
    [32] J. -H. Liu, Y. -H. Chiu, Opt. Lett. 34, 1393 (2009).
    [33] Y. -S. Zhang, A. V. Emelyanenko, J. -H. Liu, J. Polym. Sci., Part B: Polym. Phys. 55, 1427 (2017).

    下載圖示 校內:2023-07-05公開
    校外:2023-07-05公開
    QR CODE