簡易檢索 / 詳目顯示

研究生: 張文瑄
Chang, Wen-Hsuan
論文名稱: 呼吸防護具濾毒罐/匣可使用時間推估技術之建立及應用
The establishment and application of respirator canister/cartridge service time techniques
指導教授: 蔡朋枝
Tsai, Perng-Jy
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 110
中文關鍵詞: 呼吸防護具濾毒罐濾毒匣可使用時間
外文關鍵詞: Respiratory protection equipment, Canister, Cartridge, Service time
相關次數: 點閱:44下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 濾毒罐/匣(Canister/Cartridge)是淨氣式呼吸防護具(Air Purifying Respirator, APR)中,用於濾除氣狀有害物的濾材之一。濾毒罐/匣之防護是否適當且有效,除仰賴於濾毒罐/匣之正確選用外,也需其達到可使用時間(Service Time)前即時更換。本研究首先以問卷調查臺灣25家事業單位呼吸防護計畫的執行情況與呼吸防護具管理狀況。再參考各國更換規範、文獻搜尋,並結合事業單位的暴露評估資料和製造商提供訊息,建立一套「濾毒罐/匣可使用時間推估技術」,最後將上述技術應用於18家化工廠,以評估其於實務面執行之可行性。研究結果顯示,事業單位大多均有落實呼吸防護計畫所要求的項目,其中呼吸防護具更換是事業單位自評執行把握程度較低的項目。除此之外,事業單位多數僅以製造商建議作為呼吸防護具的更換依據,對於經驗法則、數學模型或NIOSH Multi-Vapor™軟體的應用均不熟悉(熟悉程度<50%)。本研究比較實驗數據與經驗法則和Multi-Vapor™軟體推估值間的相關性,發現在濾毒罐/匣內部吸附劑資訊充足之前提下,Multi-Vapor™軟體與實驗數據的相關性較高,為0.8686,但化學物質的分子量與沸點和推估結果並無一致性的關聯。本研究基於事業單位可應用之資料,與文獻搜尋具體可行性之推估方法,以事業單位規模大小(中小型企業/大型企業)與工作場所暴露化學物質情形(單一/多重),建立一「濾毒罐/匣可使用時間推估技術」,並應用於18家化工廠,共203個相似暴露族群(Similar Exposure Group, SEG)中。研究結果表示,僅有7個SEG暴露分級屬於第二級(0.5 PEL ≦ X95 < PEL)。基於本研究推估結果之建議,推估結果可能導致SEG在當次作業完後即需進行濾毒罐/匣的替換,相較於事業單位原本的更換時間,明顯造成事業單位更換呼吸防護具的成本增加,唯事業單位呼吸防護具管理人員對於技術推估結果表示是認可的,但如何說服雇主提高呼吸防護具更換成本仍有待克服。前述結果可知本研究所建立之濾毒罐/匣可使用時間推估技術,可以協助事業單位在有限的資料下,做為計算濾毒罐/匣可使用時間的參考依據,進而達到落實呼吸防護具管理之目的。

    The purpose of this study is to establish a canister/cartridge service time estimation technique, in ordor to solve the confusion of industries when replacing canister/cartridge. A questionnaire survey was conducted to investigate the implementation of respiratory protection programs in 25 workplaces in Taiwan. Then, a canister/cartridge service time estimation technique was established by international replacement standards, literature reviews, exposure assessment data from industry, and manufacturer’s information. In the end, the above technique was applied to 18 chemical industries to evaluate the feasibility in practice. This study found that the industries has less confidence in replacement of respiratory protection equipment and most industries relied solely on manufacturer’s recommendations for replacement. In addition, based on the size of the industry units (small and medium-sized / large sized) and the exposure to chemicals at the workplace (single/multiple) a respirator canister/cartridge service time techniques was established and also applied to 18 chemical factories with a total of 203 Similar Exposure Groups (SEGs). The result showed that the technique was applied with good outcome in the industries. This study can help industries to provide a reference basis for the calculation of canister/cartridge service time with limited data, thus finalizing effective respiratory protection equipment management.

    摘要 I Extend Abstract II 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 縮寫/符號與全稱 XI 第一章 前言 1 1-1 研究背景 1 1-2 研究問題 2 1-3 研究目的 3 第二章 文獻回顧 4 2-1 呼吸防護具之濾毒罐/匣 4 2-1-1 濾毒罐/匣之介紹 4 2-1-2 濾毒罐/匣之測試規範 5 2-1-3 濾毒罐/匣之選用原則 6 2-2 影響濾毒罐/匣可使用時間之因素 9 2-2-1 濾毒罐/匣之吸附劑 9 2-2-2 化學物質 10 2-2-3 溫度 10 2-2-4 濕度 11 2-2-5 流率 11 2-2-6 大氣壓 12 2-2-7 開封後之儲存及再使用 12 2-3 濾毒罐/匣可使用時間之決定方法 14 2-3-1 濾罐更換指示計 14 2-3-2 經驗法則 15 2-3-3 製造商建議 16 2-3-4 數學模型 16 2-3-4.1 單一化學物質 16 2-3-4.2 多重化學物質 19 2-3-5 Multi-Vapor™ 軟體 20 2-3-6 氣味 21 2-4 濾毒罐/匣之更換規範 24 2-4-1 美國聯邦法規29CFR 1910 24 2-4-2 美國國家標準協會ANSI Z88.2-1992 24 2-4-3 澳洲/紐西蘭標準AS/NZS1715:1994 25 2-4-4 中國國家標準GB/T 18664-2002 25 2-4-5 英國標準BS EN 529:2005 25 2-5 事業單位濾毒罐/匣之更換現況 26 第三章 研究方法 27 3-1 研究架構 27 3-2 呼吸防護計畫之執行與管理現況調查 29 3-3 擬定濾毒罐/匣可使用時間推估技術之事項 29 3-3-1 分析濾毒罐/匣之更換規範 30 3-3-2 分析製造商之產品資訊 30 3-3-3 選定推估濾毒罐/匣可使用時間之方法 30 3-4 建立濾毒罐/匣可使用時間推估之技術 32 3-5 濾毒罐/匣可使用時間推估技術之應用 32 第四章 結果與討論 34 4-1 呼吸防護計畫執行與管理現況 34 4-1-1 事業單位基本資料 34 4-1-2 呼吸防護計畫執行現況 34 4-1-3 呼吸防護具選擇與更換管理現況 35 4-2 擬定濾毒罐/匣可使用時間推估技術之事項 43 4-2-1 濾毒罐/匣更換規範之分析 43 4-2-2 製造商產品之資訊 43 4-2-3 推估濾毒罐/匣可使用時間方法之選擇 44 4-3 濾毒罐/匣可使用時間推估技術之建立 50 4-3-1 目的與適用對象 50 4-3-2 技術概述 50 4-4 濾毒罐/匣可使用時間技術之應用 52 4-4-1 事業單位之暴露分級 52 4-4-2 濾毒罐/匣可使用時間技術之應用 52 4-4-3 事業單位對應用結果之看法 53 第五章 結論與建議 60 5-1 結論 60 5-2 建議 61 第六章 參考文獻 62 附錄一 濾毒罐/匣之測試標準 69 附錄二 事業單位呼吸防護具使用與管理之調查問卷 73 附錄三 呼吸防護具濾毒罐/匣可使用時間推估技術應用之調查問卷 79 附錄四 化學物質實驗數據與推估結果 81 附錄五 濾毒罐/匣可使用時間推估技術 88 附錄六 濾毒罐/匣可使用時間推估技術之方法執行範例 95

    3M. 2012. How an Organic Vapor Respirator Cartridge Works. Available: https://multimedia.3m.com/mws/media/990135O/how-an-organic-vapor-cartridge-works.pdf [accessed 20 June 2024].
    3M. 2020. Key Considerations Regarding Respiratory Protection Assigned Protection Factors. Available: https://multimedia.3m.com/mws/media/1937480O/key-considerations-regarding-respiratory-protection-assigned-protection-factors-apf-dvc-letter.pdf [accessed 20 June 2024].
    3M. 2022a. 3M™ Service Life Software. Available: https://sls.3m.com/ [accessed 20 June 2024].
    3M. 2022b. 3M™ 使用壽命估算軟體-台灣. Available: https://multimedia.3m.com/mws/media/2187047O/3m-service-life-software-taiwan.pdf [accessed 20 June 2024].
    Abiko H, Furuse M, Takano T. 2010. Quantitative evaluation of the effect of moisture contents of coconut shell activated carbon used for respirators on adsorption capacity for organic vapors. Industrial health 48(1):52-60.
    Abiko H, Furuse M, Takano T. 2016. Estimation of Organic Vapor Breakthrough in Humidified Activated Carbon Beds:-Application of Wheeler-Jonas Equation, NIOSH MultiVapor™ and RBT (Relative Breakthrough Time). Journal of Occupational Health 58(6):570-581.
    AIHA. 1989. Odor thresholds for chemicals with established occupational health standards. American Industrial Hygiene Association.
    Amoore JE, Hautala E. 1983. Odor as an ald to chemical safety: odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. Journal of applied toxicology 3(6):272-290.
    ANSI. 1992. Z88.2 American National Standard for Respiratory Protection.
    AS/NZS. 1994. 1715 Selection, use and maintenance of respiratory protective devices.
    Balieu E. 1983. Respirator filters in protection against low-boiling compounds. J. Int. Soc. Resp. Protect (1):125-138.
    Benjamin MM. 2009. New conceptualization and solution approach for the ideal adsorbed solution theory (IAST). Environmental science & technology 43(7):2530-2536.
    Bien C, Revoir WH. 2023. Respiratory protection handbook. CRC Press.
    Bollinger NJ. 1987. NIOSH guide to industrial respiratory protection. US Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, Division of Safety Research:87-116.
    Bollinger NJ. 2004. NIOSH respirator selection logic. U. S. Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health.
    BS/EN. 2005. 529 Recommendations for selection, use, care and maintenance- Guidance document.
    Colton CE. 2000. Should organic vapor chemical cartridges be reused? Occupational Health & Safety 69(1):36-36.
    DeCamp DS, Costantino J, Black JE. 2004. Estimating Organic Vapor Cartridge Service Life. Rapport IOH-RS-BR-SR-2005-0005. Available: https://apps.dtic.mil/sti/tr/pdf/ADA439710.pdf [accessed 20 June 2024].
    Ditraglia GM, Press DS, Butters N, Jernigan TL, Cermak LS, Velin RA, et al. 1991. Assessment of olfactory deficits in detoxified alcoholics. Alcohol 8(2):109-115.
    Doney BC, Groce DW, Campbell DL, Greskevitch MF, Hoffman WA, Middendorf PJ, et al. 2005. A survey of private sector respirator use in the United States: an overview of findings. Journal of occupational and environmental hygiene 2(5):267-276.
    Doty RL, Applebaum S, Zusho H, Settle RG. 1985. Sex differences in odor identification ability: a cross-cultural analysis. Neuropsychologia 23(5):667-672.
    Dubinin M. 1989. Fundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures. Carbon 27(3):457-467.
    Favas G. 2005. End of service life indicator (ESLI) for respirator cartridges: Part I: Literature review. Victoria, Australie: DSTO.
    Freeman C, Bottenus C, Liu J, Brouns T, Clayton C, Humble P, et al. 2017. Overview of 2016 Testing of Respirator Cartridge Performance on Multiple Hanford Tank Headspaces and Exhausters. Available: https://hanfordvapors.com/wp-content/uploads/2018/03/PNNL-26821-Overview-of-2016-Testing-Respirator-Cartridge-Performance.pdf [accessed 20 June 2024].
    Gardiner K, Harrington JM. 2008. Occupational hygiene. John Wiley & Sons.
    GB/T. 2022. 18664 Selection, use and maintenance of respiratory protective equipment.
    Greenberg MI, Curtis JA, Vearrier D. 2013. The perception of odor is not a surrogate marker for chemical exposure: a review of factors influencing human odor perception. Clinical Toxicology 51(2):70-76.
    Han DH, Kang MS. 2009. A survey of respirators usage for airborne chemicals in Korea. Industrial health 47(5):569-577.
    Henry N. 1981. Respirator cartridge and canister efficiency studies with formaldehyde. American Industrial Hygiene Association Journal 42(12):853-857.
    Honeywell. 2007. Honeywell North APR Cartridge and Filter Reference Chart. Available: https://doi.org/https://prod-edam.honeywell.com/content/dam/honeywell-edam/sps/his/en-us/products/respiratory-protection/documents/HS_n_series_cartridges___filters_801.pdf [accessed 20 June 2024].
    Honeywell. 2018. Honeywell N750052L Cartridge. Available: https://prod-edam.honeywell.com/content/dam/honeywell-edam/sps/his/en-us/products/respiratory-protection/documents/n-series-cartridges-and-filters/sps-his-Honeywell-N750052L-Cartridge-NIOSH-Protection-Factors.pdf [accessed 20 June 2024].
    Jahangiri M, Adl J, Shahtaheri SJ, Kakooe H, Rahimi Forushani A, Ganjali MR. 2014. Air monitoring of aromatic hydrocarbons during automobile spray painting for developing change schedule of respirator cartridges. Journal of Environmental Health Science and Engineering 12:1-7.
    Janvier F. 2018. Optimization of Parameters Used in Predictive Models for Respirator Cartridge Service Life for Toxic Organic Vapors. Available: https://papyrus.bib.umontreal.ca/xmlui/handle/1866/20072 [accessed 20 June 2024].
    Karimi A, Jahangiri M, Derisi FZ, Nourozi MA. 2013. Revising organic vapour respirator cartridge change schedule: a case study of a paint plant in Iran. Archives of industrial hygiene and toxicology 64(1):133-138.
    Khararoodi MG, Lee CS, Haghighat F. 2022. Modelling of sorbent-based gas filters for indoor environment: A comprehensive review. Building and Environment 208: 108579.
    Kolahi H, Jahangiri M, Ghaem H, Rostamabadi A, Aghabeigi M, Farhadi P, Kamalinia M. 2018. Evaluation of respiratory protection program in petrochemical industries: application of analytic hierarchy process. Safety and health at work 9(1):95-100.
    Le-Minh N, Sivret EC, Shammay A, Stuetz RM. 2018. Factors affecting the adsorption of gaseous environmental odors by activated carbon: A critical review. Critical Reviews in Environmental Science and Technology 48(4):341-375.
    Lehrner JP, Glück J, Laska M. 1999. Odor identification, consistency of label use, olfactory threshold and their relationships to odor memory over the human lifespan. Chemical Senses 24(3):337-346.
    Lodewyckx P, Vansant E. 2000. Estimating the overall mass transfer coefficient kv of the Wheeler-Jonas equation: A new and simple model. AIHAJ-American Industrial Hygiene Association 61(4):501-505.
    Lodewyckx P, Wood GO, Ryu S. 2004. The Wheeler–Jonas equation: A versatile tool for the prediction of carbon bed breakthrough times. Carbon 42(7):1351-1355.
    Moyer ES. 1983. Review of influential factors affecting the performance of organic vapor air-purifying respirator cartridges. American Industrial Hygiene Association Journal 44(1):46-51.
    MSA. 2005. MSA Advantage Respirator Facepiece 200LS.
    MSA. 2024. MSA Response Guide Cartridge Life Expectancy Calculator. Available: https://webapps.msasafety.com/responseguide/ [accessed 20 June 2024].
    Nelson GO, Harder CA. 1974. Respirator cartridge efficiency studies: V. Effect of solvent vapor. American Industrial Hygiene Association Journal 35(7):391-410.
    Nelson GO, Correia AN. 1976. Respirator cartridge efficiency studies: VIII. Summary and conclusions. American Industrial Hygiene Association Journal 37(9):514-525.
    Nelson GO, Correia AN, Harder CA. 1976. Respirator cartridge efficiency studies: VII. Effect of relative humidity and temperature. American Industrial Hygiene Association Journal 37(5):280-288.
    Nelson GO, Harder CA. 1976. Respirator cartridge efficiency studies: VI. Effect of concentration. American Industrial Hygiene Association Journal 37(4):205-216.
    Nelson GO, Harder CA. 1972. Respirator cartridge efficiency studies IV. Effects of steady-state and pulsating flow. American Industrial Hygiene Association Journal 33(12):797-805.
    Nelson TJ. 1996. The assigned protection factor according to ANSI. American Industrial Hygiene Association Journal 57(8):735-740.
    NIOSH. 2005a. APR-STP-0066 Determination of end-of-service-life indicator.
    NIOSH. 2005b. APR-STP-0060 Determination of end-of-service-life indicator drop.
    NIOSH. 2005c. APR-STP-0061 Determination of end-of-service-life indicator visibility.
    NIOSH. 2018. MultiVapor™ Version 2.2.5 Application. Available: https://www.cdc.gov/niosh/npptl/multivapor/multivapor.html [accessed 21 May 2023].
    OSHA. 2006. 29 CFR 1910.134 Personal Protective Equipment.
    OSHA. 2013. 29 CFR 1910.1048 Occupational Safety and Health Standards: In Toxic and Hazardous Substances Formaldehyde.
    OSHA. 2014. CPL 02-00-158 Inspection procedures for the Respiratory Protection Standard.
    OSHA. 2015a. Assigned protection factors for the revised respiratory protection standard. Maroon Ebooks.
    OSHA. 2015b. Small entity compliance guide for the respiratory protection standard. Maroon Ebooks.
    OSHA. 2019a. 29 CFR 1910.1045 Occupational Safety and Health Standards: In Toxic and Hazardous Substances Acrylonitrile.
    OSHA. 2019b. 29 CFR 1910.1028 Occupational Safety and Health Standards: In Toxic and Hazardous Substances Benzene.
    OSHA. 2019c. 29 CFR 1910.1017 Occupational Safety and Health Standards: In Authority for 1910 Subpart Z Vinyl chloride.
    OSHA. 2019d. 29 CFR 1910.1052 Toxic and Hazardous Substances: In Toxic and Hazardous Substances Methylene chloride.
    OSHA. 2024. Respirator Change Schedules Using a Math Model Table to Determine a Cartridge's Service Life. Available: https://www.osha.gov/etools/respiratory-protection/change-schedules/math-model [accessed 20 June 2024].
    Pinelli F, Miceli M. 2021. Smart sensors for volatile organic compounds (VOCs) and their possible application as end of service life indicator (ESLI) for respirator cartridges. In Advances in Chemical Engineering 57:197-231.
    Robbins CA, Breysse PN. 1996. The effect of vapor polarity and boiling point on breakthrough for binary mixtures on respirator carbon. American Industrial Hygiene Association Journal 57(8):717-723.
    Rose-Pehrsson SL, Williams ML. 2005. Integration of Sensor Technologies Into Respirator Vapor Cartridges as End-of-service-life Indicators: Literature and Manufacturer's Review and Research Roadmap. Naval Research Laboratory.
    Ruthven DM. 1984. Principles of adsorption and adsorption processes. John Wiley & Sons.
    Simola M, Malmberg H. 1998. Sense of smell in allergic and nonallergic rhinitis. Allergy 53(2):190-194.
    Swearengen PM, Weaver SC. 1988. Respirator cartridge study using organic-vapor mixtures. American Industrial Hygiene Association Journal 49(2):70-74.
    Tanaka S, Haneda M, Tanaka M, Kimura K, Seki Y. 1996. Breakthrough times for vapors of organic solvents with low boiling points in steady-state and pulsating flows on respirator cartridges. Industrial health 34(2):125-131.
    Tanaka S, Nakano Y, Tsunemori K, Shimada M, Seki Y. 1999. A study on the relative breakthrough time (RBT) of a respirator cartridge for forty-six kinds of organic solvent vapors. Applied occupational and environmental hygiene 14(10):691-695.
    Thomas WJ, Crittenden B. 1998. Adsorption technology and design. Butterworth-Heinemann.
    Trout D, Breysse P, Hall T, Corn M, Risby T. 1986. Determination of organic vapor respirator cartridge variability in terms of degree of activation of the carbon and cartridge packing density. American Industrial Hygiene Association Journal 47(8):491-496.
    Vizhemehr AK, Haghighat F, Lee CS. 2013. Predicting gas-phase air-cleaning system efficiency at low concentration using high concentration results: Development of a framework. Building and Environment 68:12-21.
    Walker PL. 2021. Chemistry & Physics of Carbon: Volume 16. CRC Press.
    Wood GO. 1992. Activated carbon adsorption capacities for vapors. Carbon 30(4):593-599.
    Wood GO. 1994. Estimating service lives of organic vapor cartridges. American Industrial Hygiene Association Journal 55(1):11-15.
    Wood GO. 2000. Reviews of models for adsorption of single vapors, mixtures of vapors, and vapors at high humidities on activated carbon for applications including predicting service lives of organic vapor respirator cartridges. Los Alamos National Laboratory LA-UR-00-1531.
    Wood GO. 2004. Estimating service lives of organic vapor cartridges II: A single vapor at all humidities. Journal of occupational and environmental hygiene 1(7):472-492.
    Wood GO. 2007. MultiVapor TUTORIAL.
    Wood GO, Kissane R. 1997. Reusability study with organic vapor air-purifying respirator cartridges. Los Alamos National Laboratory LA-UR-97-4458.
    Wood GO, Lodewyckx P. 2003. An extended equation for rate coefficients for adsorption of organic vapors and gases on activated carbons in air-purifying respirator cartridges. AIHA Journal 64(5):646-650.
    Wood GO, Moyer ES. 1989. A review of the wheeler equation and comparison of its applications to organic vapor respirator cartridge breakthrough data. American Industrial Hygiene Association Journal 50(8):400-407.
    Wood GO, Moyer ES. 1991. A review and comparison of adsorption isotherm equations used to correlate and predict organic vapor cartridge capacities. American Industrial Hygiene Association Journal 52(6):235-242.
    Wood GO, Snyder JL. 2007. Estimating service lives of organic vapor cartridges III: Multiple vapors at all humidities. Journal of occupational and environmental hygiene 4(5):363-374.
    Wood GO, Stampfer J. 1993. Adsorption rate coefficients for gases and vapors on activated carbons. Carbon 31(1):195-200.
    Wood GO. 2015. Correlating and Extrapolating Air-Purifying Respirator Cartridge Breakthrough Times-A Review. Journal of the International Society for Resiratory Protection 32(1):23-36.
    Wu J, Claesson O, Fangmark I, Hammarstrom LG. 2005. A systematic investigation of the overall rate coefficient in the Wheeler–Jonas equation for adsorption on dry activated carbons. Carbon 43(3):481-490.
    Yamamoto DP. 2018. Handbook of Respiratory Protection Safeguarding Against Current and Emerging Hazards CRC Press.
    Yoon YH, Nelson JH. 1984. Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life. American Industrial Hygiene Association Journal 45(8):509-516.
    Yoon YH, Nelson JH. 1992. Breakthrough time and adsorption capacity of respirator cartridges. American Industrial Hygiene Association Journal 53(5):303-316.
    Zhou C, Feng S, Zhou G, Jin Y, Liang J, Xu J. 2011. A simple method for calculating the overall adsorption rate constant in the Wheeler–Jonas equation. Adsorption Science & Technology 29(1):71-82.
    陳春萬. 2016. 濾毒罐儲放技術探討與試行定性密合度測試技術(H302). 勞動部勞動及職業安全衛生研究所.
    陳春萬, 杜宗明. 2016. 密合度測試落實措施與濾毒罐使用管理技術探討. 勞動部勞動及職業安全衛生研究所.
    陳春萬, 劉怡伶, 陳俊瑋. 2014. 防毒吸收罐不當選用之性能測試. 勞工安全衛生研究季刊:22(1), 82-90.
    勞動部職業安全衛生署. 2020a. 呼吸防護計畫技術指引.
    勞動部職業安全衛生署. 2020b. 呼吸防護計畫技術參考手冊.
    勞動部職業安全衛生署. 2022. 職業安全衛生設施規則.
    經濟部標準檢驗局. 2013. 中華民國國家標準. 呼吸防護裝置-氣體濾材及組合型濾材-要求、試驗、標示 CNS 6636 Z2023 : 工業安全.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE