簡易檢索 / 詳目顯示

研究生: 劉信佑
Liu, Hsin-Yu
論文名稱: 以拉曼光譜法進行眼角膜潰瘍感染病症之評估
Evaluation of the Corneal Ulcer by Raman Spectroscopy
指導教授: 張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 74
中文關鍵詞: 拉曼光譜角膜潰瘍淚水細菌
外文關鍵詞: Raman spectra, Corneal Ulcer, Human Tears, Bacteria
相關次數: 點閱:104下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 角膜潰瘍病患就診時,醫師須藉由微生物培養以茲判斷,始能調整恰當的藥物進行治療,這需耗費數天或數週的時間。因此,我們想在微少樣本量之分取,且不需複雜之前處理的原則下,發展一種能夠快速鑑定的新方法。相較於傳統檢測,拉曼光譜法配搭予適當波長的雷射光之擇取,並透過主成分分析法(PCA),即可在短時間內完成檢測。本研究分兩方向探討;(1)針對角膜潰瘍病人與正常人的差異(液滴內含物層積拉曼光譜法(Drop coating deposition Raman spectroscopy, DCDRS)),及(2)使用參考菌株初步測試試樣點滴抽氣過濾法之效用,藉由光譜分析所做的成果報告之。
    本研究使用樣本共有三種;(1)合成淚水與(2)其內加入細菌經時所得,及(3)臨床採得的淚水試樣。合成淚水有助於探討臨床淚水中內含物的濃度,利於各光譜波峰歸屬之辨識。其次混予固定量的細菌後,經時觀察比較其差異,可區別因細菌而產生的波峰與否,有利於是細菌本身性的釋出或受感染者之生理應答性分泌的區分。Lactoferrin與Lysozyme為抵禦微生物的生理應答性第一道防線,當調整其濃度混入於蛋白質與鹽類所構成的合成淚水,我們發現其濃度越高,各歸屬的拉曼波峰也越高,PCA分佈也顯示可區別之勢。其次,當合成淚水混合於109 CFU/ml之金黃色葡萄球菌,經不同時間培養作用後,並未發現有其他特徵峰出現。PCA可觀察到作用前與作用12小時後分佈不同,此可歸因細菌本身性的釋出物質影響DCDRS。最後,導入臨床樣本進行比較;發現角膜潰瘍淚水比正常者淚水以及有無加入細菌之合成淚水,在1112、1520與1587 cm-1的位置多出三個明顯波峰,以及958、1307和1390 cm-1三個小的波峰。此外,於855 cm-1波峰強度更強。臨床樣本的變異固然很大,但經PCA分析仍可觀察出正常與患者分布趨勢之不同,顯示此疑似為患者受感染之內生性應答所導致;即TIMP-1、MMP-9及HNP。這也反映出本實驗分析流程實可發揮辨別功能的確據。為此,我們更以ELISA分析套組求證;目前僅發現可能屬於HNP及MMP-9的855及1112 cm-1的波峰,而其他波峰尚無明顯對應關係,雖也顯現出臨床樣本的複雜性,但可確認HNP與MMP-9於淚水中明顯也比正常及非角膜潰瘍眼疾含量還高。最後,另由革蘭氏染色可知淚水中有細菌存在,從檢測菌體角度初步探討,使用試樣點滴抽氣過濾法,評估此法之效用;初步將參考菌株(S. aureus)過濾存留於含銀微粒之濾膜上,其拉曼光譜圖訊息可歸因於該細菌使然。本研究從淚水分成兩方向來探討角膜潰瘍所進行的快速即時診斷評估方法,期望提供另一可靠臨床上應用。

    It is a complex and time-consuming process for the detection of microorganism from the clinical specimen of corneal ulcer. A fast and non-invasive spectrum-acquisition tool of specimen, especially in biological samples, is the greatest advantage of Raman spectroscopy. In this study, micro-Raman system is performed for rapidly acquiring Raman spectra of human tears collected from patients and healthy donors. Mimic-tears composed of lactoferrin, lysozyme, albumin, IgA, urea and sodium bicarbonate are also investigated. We adjusted the concentration couple of lactoferrin and lysozyme to simulate the possible differences with or without infection of microorganism. We tried to use the principle component analysis (PCA) to analyze the Raman spectra. Our results show the intensities of Raman spectra would be getting strong with the concentration couple increasing, and were associated with the 1st principal component. Staphylococcus aureus (S. aureus) were added into the mimic-tears to simulate an in vitro disease. As a result, only the signals of S. aureus were presented without apparent difference of signals from different reaction time. Furthermore, clinical samples were introduced to compare. We found that the Raman spectra obtained from the normal participants were similar to those of mimic-tears. The strong peaks at 1112, 1520 and 1587 cm-1 and weak peaks at 958, 1307 and 1390 cm-1 only presented in patients. In addition, the peaks at 855 cm-1 in patients’ tears were stronger than those in other tears. We compared the spectra from normal and corneal ulcer by PCA and could be separated into different groups. Perhaps these peaks in patients of above are endogenous caused. Therefore, we applied three ELISA kits for TIMP-1, MMP-9 and HNP that commonly discussed with ocular diseases and associate with corneal ulcer. Our results showed the concentrations of HNP and MMP-9 were higher in corneal ulcer. The peaks at 855 and 1112 cm-1 in corneal ulcer may be caused by HNP and MMP-9. On the other hand, the bacteria in clinical samples may be filtered, remained on the metal membrane, and their signals were specific for bacterial Raman spectrum. Using S. aureus with the number 109 CFU/ml as a model, silver membrane is proved a good substrate to acquire the Raman spectrum of S. aureus. Finally, decreased number to 105 CFU/ml of S. aureus still could acquire good Raman signals of S. aureus. In this study, micro-Raman system using Au/glass or Ag membrane substrates and PCA techniques may provide a fast and non-invasive platform for tears, giving doctors a diagnostic reference.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1研究背景與目的 1 1.2眼睛的淚水生理功能與眼睛疾病之檢查介紹 2 1.2.1人類淚水的組成與功能 2 1.2.2人體眼睛相關之疾病 4 1.2.3角膜潰瘍之檢查流程與概述 8 1.2.4淚液功能之檢查 9 1.3拉曼光譜的介紹與原理 11 1.3.1拉曼散射的歷史 11 1.3.2拉曼散射原理 11 1.4 文獻回顧 14 1.4.1 拉曼光譜搭配主成份分析法分析淚液 14 1.4.2 蛋白質分子量區間分離分析法 16 1.4.3 光譜於細菌上的研究 18 1.5 研究架構 20 第二章 研究設備與方法 21 2.1研究設備 21 2.2拉曼儀器介紹 22 2.3基材製備 23 2.4臨床樣本取樣與保存 24 2.5合成淚水的配製 25 2.6樣本的測量方式 27 2.7資料的收集與資料的分析處理 29 2.7.1主成分分析法(Principal component analysis) 29 2.7.2數據的處理方式 30 2.8 角膜潰瘍病理機制中特定物質檢測 32 2.9從含菌液體中獲取細菌的方法建立 32 第三章 結果與討論 34 3.1淚水中的成份探討 34 3.1.1組成淚水主要物質的各個光譜表現 34 3.1.2合成淚水乾燥後形態與其拉曼光譜之探討 35 3.1.3合成淚水與正常者眼睛淚水拉曼光譜比較 37 3.1.4探討合成淚水中Lactoferrin與Lysozyme含量其拉曼圖譜與PCA分佈表現 38 3.1.5探討合成淚液與細菌混合後之拉曼光譜與PCA分佈表現 40 3.2正常眼睛的淚水探討 45 3.2.1單一個體樣本各部份拉曼光譜之探討 45 3.2.2單一個體樣本其各部分光譜之主成分分析 49 3.3臨床樣本眼睛的淚水探討 50 3.3.1臨床樣本於光譜上的表現 50 3.3.2主成分分析法分析臨床樣本之拉曼光譜 53 3.4角膜潰瘍病理機制中特定物質檢測結果 57 3.4.1探討特定物質與臨床樣本拉曼圖譜之關係 57 3.4.2 ELISA法驗證此特定物質的存在 59 3.5過濾檢測的評估與探討 60 3.5.1濾膜當作基材使用之評估 60 3.5.2從含菌液體中獲取細菌光譜之方法建立 63 第四章結論與未來展望 65 參考文獻 68

    [1]褚仁遠、張琳、張朝凱,「眼病學」,宏欣文化事業有限公司,2005
    [2]施秀鶴、皮亦雄,“拉曼光譜在食品科學上的應用”,科儀新知,28,89-96 (1997)
    [3] Sariri, R.; Ghafoori, H., Tear proteins in health, disease, and contact lens wear. Biochemistry-Moscow 2008, 73 (4), 381-392
    [4] Bron, A. J.; Tiffany, J. M.; Gouveia, S. M.; Yokoi, N.; Voon, L. W., Functional aspects of the tear film lipid layer. Experimental Eye Research 2004, 78 (3), 347-360.
    [5]許紋銘,「臨床實用眼科學」,合記圖書,2007年
    [6] Fluckinger, M.; Haas, H.; Merschak, P.; Glasgow, B. J.; Redl, B., Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores. Antimicrobial Agents and Chemotherapy 2004, 48 (9), 3367-3372.
    [7] 陳明琮、王惠珠、陳振武, “鱉實驗、細菌培養及組織抹片對感染性角膜潰瘍診斷價值的評估”,中華民國眼科醫學會會刊,29,666-681 (1990)
    [8] Steuhl, K. P.; Doring, G.; Henni, A.; Thiel, H. J.; Botzenhart, K., Relevance of host-derived and bacterial factors in pseudomonas-aeruginosa corneal infections. Investigative Ophthalmology & Visual Science 1987, 28 (9), 1559-1568.
    [9] Kernacki, K. A.; Fridman, R.; Hazlett, L. D.; Lande, M. A.; Berk, R. S., In vivo characterization of host and bacterial protease expression during Pseudomonas aeruginosa corneal infections in naive and immunized mice. Current Eye Research 1997, 16 (4), 289-297.
    [10] McDermott, A. M.; Rich, D.; Cullor, J.; Mannis, M. J.; Smith, W.; Reid, T.; Murphy, C. J., The in vitro activity of selected defensins against an isolate of Pseudomonas in the presence of human tears. British Journal of Ophthalmology 2006, 90 (5), 609-611.
    [11] http://emedicine.medscape.com/article/1196936-overview
    [12] Acera, A.; Rocha, G.; Vecino, E.; Lema, I.; Duran, J. A., Inflammatory markers in the tears of patients with ocular surface disease. Ophthalmic Research 2008, 40 (6), 315-321.
    [13] Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature 2002, 415 (6870), 389-395.
    [14] Byrne, Kathleen A., “Diagnostic microbiology and cytology of the eye”, Boston : Butterworth-Heinemann (1995)
    [15] Richard L. McCreery, “Raman Spectroscopy for Chemical Analysis”, New york : Wiley Interscience (2000)
    [16] Raman C. V. and Krishnan K. S., A New Type of Secondary Radiation, Nature 1928, 121 (3048), 501-502.
    [17] Maragou, M.; Vaikousis, E.; Ntre, A.; Koronis, N.; Georgiou, P.; Hatzidimitriou, E.; Sotsiou, F.; Dantis, P., Tear and saliva ferning tests in Sjogren's syndrome (SS). Clinical Rheumatology 1996, 15 (2), 125-132.
    [18] Jumblatt, M. M.; Imbert, Y.; Young, W. W.; Foulks, G. N.; Steele, P. S.; Demuth, D. R., Glycoprotein 340 in normal human ocular surface tissues and tear film. Infection and Immunity 2006, 74 (7), 4058-4063.
    [19] Koo, B. S.; Lee, D. Y.; Ha, H. S.; Kim, J. C.; Kim, C. W., Comparative analysis of the tear protein expression in blepharitis patients using two-dimensional electrophoresis. Journal of Proteome Research 2005, 4 (3), 719-724.
    [20] Ohashi, Y.; Dogru, M.; Tsubota, K., Laboratory findings in tear fluid analysis. Clinica Chimica Acta 2006, 369 (1), 17-28.
    [21] Filik, J.; Stone, N., Analysis of human tear fluid by Raman spectroscopy. Analytica Chimica Acta 2008, 616 (2), 177-184.
    [22] Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A., Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389 (6653), 827-829.
    [23] Pearce, E. I.; Tomlinson, A., Spatial location studies on the chemical composition of human tear ferns. Ophthalmic and Physiological Optics 2000, 20 (4), 306-313.
    [24] Filik, J.; Stone, N., Investigation into the protein composition of human tear fluid using centrifugal filters and drop coating deposition Raman spectroscopy. Journal of Raman Spectroscopy 2009, 40 (2), 218-224.
    [25] Harz, M.; Rosch, P.; Peschke, K. D.; Ronneberger, O.; Burkhardt, H.; Popp, J., Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst 2005, 130 (11), 1543-1550.
    [26] Willemse-Erix, D. F. M.; Scholtes-Timmerman, M. J.; Jachtenberg, J. W.; van Leeuwen, W. B.; Horst-Kreft, D.; Schut, T. C. B.; Deurenberg, R. H.; Puppels, G. J.; van Belkum, A.; Vos, M. C.; Maquelin, K., Optical Fingerprinting in Bacterial Epidemiology: Raman Spectroscopy as a Real-Time Typing Method. Journal of Clinical Microbiology 2009, 47 (3), 652-659.
    [27] Sengupta, A.; Mujacic, M.; Davis, E. J., Detection of bacteria by surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry 2006, 386 (5), 1379-1386.
    [28] Guicheteau, J.; Argue, L.; Emge, D.; Hyre, A.; Jacobson, M.; Christesen, S., Bacillus spore classification via surface-enhanced Raman spectroscopy and principal component analysis. Applied Spectroscopy 2008, 62 (3), 267-272.
    [29] Schiza, M. V.; Perkins, D. L.; Priore, R. J.; Setlow, B.; Setlow, P.; Bronk, B. V.; Wong, D. M.; Myrick, M. L., Improved dispersion of bacterial endospores for quantitative infrared sampling on gold coated porous alumina membranes. Applied Spectroscopy 2005, 59 (8), 1068-1074.
    [30] Lin, M. S.; Al-Holy, M.; Chang, S. S.; Huang, Y. Q.; Cavinato, A. G.; Kang, D. H.; Rasco, B. A., Rapid discrimination of Alicyclobacillus strains in apple juice by Fourier transform infrared spectroscopy. International Journal of Food Microbiology 2005, 105 (3), 369-376.
    [31] Sariri, R.; Ghafoori, H., Tear proteins in health, disease, and contact lens wear. Biochemistry-Moscow 2008, 73 (4), 381-392.
    [32] Mackie, I. A.; Seal, D. V., Diagnostic implications of tear protein profiles. British Journal of Ophthalmology 1984, 68 (5), 321-324.
    [33] Fullard, R. J.; Tucker, D. L., Changes in human tear protein-levels with progressively increasing stimulus. Investigative Ophthalmology & Visual Science 1991, 32 (8), 2290-2301.
    [34] Milder B. “The lacrimal apparatus. In: Moses RA, editor. Adler’s physiology of the eyes: clinical application”, St Louis: The C.V. Mosby Company, 16-37, (1975)
    [35] Thaysen, J.H.; Thorn, N.A., Excretion of urea, sodium potassium and chloride in human tear. The American journal of physiology 1954, 178(1), 160-164
    [36] Kijlstra, A.; Jeurissen, S. H. M.; Koning, K. M., Lactoferrin levels in normal human tears. British Journal of Ophthalmology 1983, 67 (3), 199-202.
    [37] Sack, R. A.; Kah, O. T.; Ami, T., Diurnal tear cycle - evidence for a nocturnal inflammatory constitutive tear fluid. Investigative Ophthalmology & Visual Science 1992, 33 (3), 626-640.
    [38] Ng, V.; Cho, P.; To, C. H., Tear proteins of normal young Hong Kong Chinese. Graefes Archive for Clinical and Experimental Ophthalmology 2000, 238 (9), 738-745.
    [39] Zhonghua Yan Ke Za Zhi., Tear lactoferrin content in normal Chinese adults and various ocular diseases. Chinese journal of ophthalmology 1989, 25(5), 292-295
    [40] Lal, H.; Ahluwalia, B. K.; Khurana, A. K.; Sharma, S. K.; Gupta, S., Tear lysozyme levels in bacterial, fungal and viral corneal ulcers. Acta Ophthalmologica 1991, 69 (4), 530-532.
    [41]陳順宇,「多變量分析」,華泰文化有限公司,2004年
    [42] Fini, M. E.; Girard, M. T.; Matsubara, M., Collagenolytic gelatinolytic enzymes in corneal wound-healing. Acta Ophthalmologica 1992, 70, 26-33.
    [43] Fini, M. E.; Girard, M. T.; Matsubara, M.; Bartlett, J. D., Unique regulation of the matrix metalloproteinase, gelatinase-b. Investigative Ophthalmology & Visual Science 1995, 36 (3), 622-633.
    [44] Twining, S. S.; Fukuchi, T.; Yue, B.; Wilson, P. M.; Boskovic, G., Corneal synthesis of alpha-1-proteinase inhibitor (alpha-1-antitrypsin). Investigative Ophthalmology & Visual Science 1994, 35 (2), 458-462.
    [45] Twining, S. S.; Fukuchi, T.; Yue, B.; Wilson, P. M.; Zhou, X. Y.; Loushin, G., Alpha-2-macroglobulin is present in and synthesized by the cornea. Investigative Ophthalmology & Visual Science 1994, 35 (8), 3226-3233.
    [46] Brown, D.; Chwa, M.; Escobar, M.; Kenney, M. C., Characterization of the major matrix degrading metalloproteinase of human corneal stroma - evidence for an enzyme-inhibitor complex. Experimental Eye Research 1991, 52 (1), 5-16.
    [47] Xue, M. L.; Wakefield, D.; Willcox, M. D. P.; Lloyd, A. R.; Di Girolamo, N.; Cole, N.; Thakur, A., Regulation of MMPs and TIMPs by IL-1 beta during corneal ulceration and infection. Investigative Ophthalmology & Visual Science 2003, 44 (5), 2020-2025.
    [48] Acera, A.; Rocha, G.; Vecino, E.; Lema, I.; Duran, J. A., Inflammatory markers in the tears of patients with ocular surface disease. Ophthalmic Research 2008, 40 (6), 315-321.
    [49] Afonso A. A.; Sobrin L.; Monroy D. C.; Selzer M.; Lokeshwar B., and Pflugfelder S. C., Tear Fluid Gelatinase B Activity Correlates with IL-1a Concentration and Fluorescein Clearance in Ocular Rosacea. Investigative Ophthalmology & Visual Science 1999, 40(11), 2506-2512
    [50] Leonardi, A.; Brun, P.; Abatangelo, G.; Plebani, M.; Secchi, A. G., Tear levels and activity of matrix metalloproteinase (MMP)-1 and MMP-9 in vernal keratoconjunctivitis. Investigative Ophthalmology & Visual Science 2003, 44 (7), 3052-3058.
    [51] Sobrin, L.; Liu, Z. G.; Monroy, D. C.; Solomon, A.; Selzer, M. G.; Lokeshwar, B. L.; Pflugfelder, S. C., Regulation of MMP-9 activity in human tear fluid and corneal epithelial culture supernatant. Investigative Ophthalmology & Visual Science 2000, 41 (7), 1703-1709.
    [52] Hans-Ulrich Gremlich and Bing Yan, “Infrared and raman spectroscopy of biological materials”, M. Dekker, New York (2001)
    [53] George Socrates, “Infrared and Raman characteristic group frequencies :tables and charts”, Wiley, New York, 328-340 (2001)

    下載圖示 校內:2013-07-22公開
    校外:2014-07-22公開
    QR CODE