| 研究生: |
張元曦 Chang, Yuan-Hsi |
|---|---|
| 論文名稱: |
儲氣田氣井套管水泥之應力分析 Stress Analysis of the Casing Cement in the Reservoir Gas Well |
| 指導教授: |
王建力
Wang, Chein-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | ANSYS 、地下儲氣工程 、油氣井 、疲勞破壞 、套管水泥 |
| 外文關鍵詞: | fatigue failure, ANSYS, oil and gas well, underground gas storage engineering, casing cement |
| 相關次數: | 點閱:107 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
儲氣田氣井套管水泥在氣井操作過程中,受到許多的加載包括:井壁壓力、溫度等的加載,導致套管水泥段受到應力作用,而發生套管水泥封固能力喪失的現象,使井內的氣體逸漏出來,造成巨大的經濟損失。
本研究利用電腦輔助工程分析軟體 ANSYS,對油氣井套管水泥進行應力分析,探討水泥段的破壞模式。實驗方面,本研究對三種不同配比的水泥進行抗壓及抗彎試驗,求得水泥材料的基本力學參數,包括:抗壓、抗張強度、楊氏模數及柏松比。以上述實驗結果,帶入數值分析中,探討在各種的加載下,油氣井適用的水泥參數。最後,對週期性井壁壓力加載,造成套管水泥的疲勞破壞,進行一初步的探討。
研究結果指出,套管水泥封固能力的喪失與水泥和岩石的力學參數、異質材料界面結合強度及所受的加載方式有相當的關連。在井壓增加的加載下,高楊氏模數的岩石可幫助水泥段抵抗破壞;在水泥段外部壓力增加的加載下,高楊氏模數的水泥較能抵抗破壞;在井壁溫度增加的加載下,低楊氏模數的水泥較能抵抗熱應力作用之破壞。在套管水泥的疲勞破壞方面,本研究的結果指出在週期性的壓力加載下,當井壁壓力由10 MPa增加到20 MPa時,疲勞壽命會大幅地降低,當井壓大到70 MPa時,疲勞壽命小於300次。
The loss of cement bond log in casing cement in gas well reservoir operation and engineering can result in a serious gas leakage and hence big economic loss. The stresses which result in the loss of cement bond log were induced by variations of wellbore pressure and temperature during the operating life of the well.
This study used a finite element analysis package, ANSYS, to analyze the mechanical behaviour of the wellbore-casing-cement system and discuss the failure mode of the cement portion. This study also carried out experiments for three kinds of cements to obtain their mechanical parameters. The experimental results were incorporated into the numerical analysis and the proper cement mechanical properties were discussed. This study also investigated the fatigue behaviour of the cement by periodical wellbore pressure loadings.
The results indicate that the loss of cement bond log is related to the types of applied load and mechanical properties of the cement and rock. When wellbore pressure increases, high Young`s modulus rock can help cement to resist fracture. When outer cement stress increases, high Young`s modulus cements are advantageous. However, when wellbore temperature increases, low Young`s modulus cements are preferred. Under periodical wellbore pressure loads, the casing cement will have fatigue failure. The results show that when wellbore pressure increases from 10MPa to 20MPa, the fatigue life of the casing cement will decrease greatly. When the wellbore pressure increases to 70MPa, the fatigue life of the casing cement is less than 300 cycles.
1. Abdel Wahab, M. M., et al., “Numerical Prediction of Fatigue Crack Propagation Lifetime in Adhesively Bonded Structures” , Int. J. of Fatigue, Vol. 24, No. 6, P.705-709, 2002
2. Atkinson, C., Eftaxiopoulos, D. A., “A Plane Model for the Stress Field Around an Inclined, Cased and Cemented Wellbore” , Int. J. for Numerical and Analytical Methods in Geomechanics, Vol. 20, No. 8, P.549-569, 1996.
3. Batesole, E. C., Wllkes, J. O., “Thermal Effects in Cyclic Operation of Storage Reservoirs” , SPE(Society of Petroleum Engineers)16864, P.1295-1300,(Nov. 1988)
4. Behrmann,L.A., Li,J.L.,et.al., “Borehole Dynamics During Underbalanced Perforating” , SPE 38139, P.17-24,(June 1997).
5. Carpenter, R. B., Brady, J. L., Blount, C. G., “Effects of Temperature and Cement Admixes on Bond Strength” , JPT, P.880-885&941,(Aug. 1992)
6. Carter, L. G., et al., “Expanding Cements for Primary Cementing” , SPE 1235,(Mar. 1966)
7. Carter, L. G., Evans, G. W., “A Study of Cement-Pipe Bonding” , SPE 764, P.157-161,(Feb. 1964)
8. Chung, Y. L.,et al., “Boundary Element Analysis of Interface Cracks Subjected to Non-Uniform Thermal Loading” , Int. J. of Fracture, Vol. 110, P.137-154, 2001.
9. Cook, R. D., et al., “Concepts and Applications of Finite Element Analysis” , Third Edition,John Wiley & Sons, 1989.
10. Curley, A. J., et al., “Predicting the Service-Life of Adhesively-Bonded Joints” , Int. J. of Fracture, Vol. 103, P. 41-69, 2000.
11. Daye, M. A., and Fu, C. C.(Editors), “Creep and Shrinkage of Concrete:Effect of Materials and Environment” , American Concrete Institute, 1992.
12. Dharmananda, K., et al., “Underground Gas Storage: Issues Beneath the Surface” , SPE 88491,(Oct. 2004)
13. Goodman, R. E., “Introduction to Rock Mechanics” , Second Edition,John Wiley & Sons, 1989.
14. Goodwin, K. J., Crook, R. J., “Cement Sheath Stress Failure” , SPE 20453 , P. 291-296,(Dec. 1992).
15. Hinterhuber, H. H., “Economics of Underground Storage of Oil and Gas” , SPE 3721, (May 1972)
16. Ikeda, T., Sun, C. T., “Stress Intensity Factor Analysis for an Interface Crack Between Dissimilar Isotropic Materials under Thermal Stress” , Int. J. of Fracture, Vol. 111, P. 229-249, 2001.
17. Jackson, P. B., Murphey, C. E., “Effect of Casing Pressure on Gas Flow Through a Sheath of Set Cement” , SPE 25698, P. 215-224,(Feb. 1993)
18. Joao, C. R., et al., “Stress Analysis of Casing String Submitted to Cyclic Stream Injection” , SPE 38978,(Sep. 1997)
19. Jorden, J. R., and Campbell, F. L., “Well Logging I—Rock Properties, Borehole Environment, Mud and Temperature Logging” , Society of Petroleum Engineers of AIME, 1984.
20. Jutten, J. J., Gulllot, D., Parcevaux, P. A., “Relationship Between Cement Slurry Composition, Mechanical Properties, and Cement-Bond-Log Output” , SPE 16652 , P. 75-82,(Feb. 1989)
21. Meyer, M., Schmauder, S., “Thermal Stress Intensity Factors of Interface Cracks in Bimaterials” , Int. J. of Fracture, Vol. 57, P. 381-388, 1992.
22. Nacul, E. C., Rodriguez, J. J., “Underground Gas Storage in the World. Situation in the Republic of Argentina” , SPE 38243, P. 32-39,(Apr. 1997)
23. Parcevaux, P. A., Sault, P. H., “Cement Shrinkage and Elasticity:A New Approach for a Good Zonal Isolation” , SPE 13176,(Sep. 1984)
24. Perkins, T. K., Gonzalez, J. A., “Changes in Earth Stresses Around a Wellbore Caused by Radially Symmetrical Pressure and Temperature Gradients” , SPE 10080, P. 129-140,(Apr. 1984)
25. Rae, P., Wilkins, D., “A New Approach to the Prediction of Gas Flow After Cementing” , SPE 18622, P. 61-69,(Feb. 1989)
26. Ravi, K., et al., “Safe and Economic Gas Wells through Cement Design for Life of the Well” , SPE 75700,(May 2002)
27. Rudi Rubiandini, R. S., “New Additive for Improving Shearbond Strength in High Temperature and Pressure Cement” , SPE 62750,(Sep. 2000)
28. Schwalm, H. E., “Economics of Underground Gas Storage” , SPE 3288, P.1221-1224,(Oct. 1971)
29. Shikari, Y. A., “Gas Research Institute Underground Gas Storage Research Program: An Overview” , Spe 17739,(June 1989)
30. Thiercelin, M. J.,et al., “Cement Design Based on Cement Mechanical Response” , SPE 52890, P. 266-273,(Dec. 1998)
31. Ugural, A. C., “Mechanics of Materials” , McGraw-Hill, 1991.
32. 丁觀海譯(Timoshenko, S. P., Goodier, J. N.著),“彈性力學理論”,國立編譯館,1973。
33. 中油公司,“鐵鉆山儲氣窖營運技術研究計畫”,中國石油股份有限公司執行報告,第88頁,2004年12月。
34. 王志文,“天然氣儲氣窖井壓測試分析之研究”,國立成功大學資源工程研究所碩士論文,2003。
35. 王建力,“有限元素法上課講義”,國立成功大學資源系,2003。
36. 王華宗等譯(Doolittle, J. S.,et al.著),“工程熱力學”,冶金工業出版,1992。
37. 王德宗,“地熱及深井用水泥在高溫下硬化之特性研究”,國立成功大學礦冶及材料科學研究所碩士論文,1985。
38. 吳柏裕,“天然氣儲氣窖注氣功能及效益”,台灣天然氣供需輸儲現況及展望研討會,第63-83頁,1999。
39. 宋祖芳,“水泥試驗”,台灣區水泥工業同業公會,1977。
40. 李輝煌,“電腦輔助工程分析(ANSYS)上課講義”,國立成功大學工科系,2004。
41. 姜雲鶴,“金屬材料學”,正文書局,1981。
42. 翁豐源,“耐高溫水泥乳之研究”,石油鑽採工程(中國石油學會出版),第十八期,第20-47頁,1977。
43. 涂家輝,“異向性雙合成材料之破壞力學性質分析”, 國立成功大學資源工程研究所碩士論文,2002。
44. 郭珍明,“以有機溶劑作為水泥熟料助磨劑之研究”, 國立成功大學資源工程研究所碩士論文,2004。
45. 陳金土、邱金水等人,“鑽採工程材料手冊:第八篇—套管與下水泥工程”,中國石油股份有限公司台灣油礦探勘總處,1987。
46. 陳精一,“ANSYS 6.0電腦輔助工程分析”,全華科技圖書股份有限公司,2002。
47. 黃兆龍,“混凝土性質與行為”,詹氏出版社,1997。
48. 黃忠信,“土木材料”,三民書局,1998。
49. 詹益謙、潘翁海等人,“鑽井工程”,中國石油學會,1973。
50. 劉得成,“模擬瀝青混凝土疲勞裂縫之成長”, 國立成功大學土木工程研究所碩士論文,2004。
51. 賴育良等人,“ANSYS電腦輔助工程分析”,儒林圖書有限公司,2000。
52. 龔人俠,“水泥化學概論”,台灣區水泥工業同業公會,1977。
53. http://www.ansys.com