| 研究生: |
許豪驛 Hsu, Hao-Yi |
|---|---|
| 論文名稱: |
鎂基-二氧化鋯-碳材混合儲氫材料之吸放氫之特性研究 Research on adsorption and desorption characteristics of hydrogen storage materials mixed by Mg-based, ZrO2 and carbon materials |
| 指導教授: |
陳朝光
Chen, Chao-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 石墨烯 、氫氣 、擴散係數 、儲氫材料 、觸媒 |
| 外文關鍵詞: | Graphene, Hydrogen, Diffusion coefficient, Hydrogen storage materials, Catalyst |
| 相關次數: | 點閱:104 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫氣是理想的潔淨燃料,其燃燒過程並不會產生污染產物,且氫已被證實為理想的攜能元素,使其在燃料電池的應用上深具潛力。優良儲氫材料應具備儲氫量大、重量輕、容易活化、吸放氫之溫度與壓力適當、反應速率快、使用壽命長及成本低廉等優點。
本文主要目的在針對奈米儲氫材料的研究開發,研究以分子動力學模型為基礎,探討奈米材料儲氫過程之作用機制,並進一步建構完整的實驗設備來研究奈米材料的儲氫條件。本文分為實驗與模擬兩大部分,在模擬部分使用分子動力學方法,模擬在儲氫的狀態下,金屬內部結構原子運動的狀況,並進一步的分析運動機制的變化。實驗部分在於開發高儲氫輕金屬氫化物,與二氧化鋯及石墨烯或奈米碳管等碳材,相互混合成為多元之儲氫材料,並探討其對於提升儲氫能力之影響。
研究結果中發現,添加ZrO2可以大幅改善吸放氫的動力學部分,而保有將近5wt.%的儲氫量;而添加碳材則可大幅降低放氫溫度,使得實驗可以在較低的溫度下操作,減少操作上的危險性;在另一方面,藉由分子動力學模擬可以更了解氫原子在內部的運動機制,並提供一些重要的實驗參數供往後研究參考。
In recent years, environmental pollution becomes a growing issue due to excessive dependence on fossil fuels. To solve the problem, hydrogen is an ideal alternative, for it produces few pollutants during combustion process. On the other hand, the hydrogen, an ideal energy carrier, has a great potential on fuel cell applications. Therefore, researches on improvement of hydrogen storage characteristics are needed, including capacity, operating temperature and pressure.
The present research is divided into two parts, experiment and simulation. The main purpose is to develop nanomaterials for hydrogen storage. In experimental part, the composite hydrogen storage materials mixed with ZrO2 and graphene or carbon nanotubes are developed. Moreover, the influences on the enhancement of hydrogen storage capacity are analyzed. In the simulation part, molecular dynamics model is used to study the movement of hydrogen atoms in the metal structure and the change in the mechanism.
In conclusion, ZrO2 improves the absorption and desorption kinetics, holding up to 5 wt.% hydrogen storage capacity, while carbon materials reduces the operating temperature for more secure experimental process. On the other hand, the molecular dynamics model provides a more precise understanding on the atomic movement mechanism. Above all, along with all the results, some important experimental parameters are proposed as the reference for future research.
[1] U.S. Department of Energy, Office of Basic Energy Sciences, 2003, Basic research needs for the hydrogen economy, http://www.sc.doe.gov/bes/hydrogen.pdf
[2] U.S. Department of Energy, Office of Hydrogen, Fuel Cells, and Infrastructure Technologies, 2003, Multi-Year Research, Development and Demonstration Plan,
http://www.eere.energy.gov/hydrogen andfuelcells/mypp/
[3] Noh, J.S., Agarwal, R.K., Schwarz, J.A., Hydrogen storage-systems using activated carbon, International Journal of Hydrogen Energy, 12(10), pp.693-700, 1987.
[4] Lin, Y., Ding, F., Yakobson, B.I., Hydrogen storage by spillover on graphene as a phase nucleation process, Physical Review B, .78(4), 041402, 2008.
[5] Georgakis M., Stavropoulos G., Sakellaropoulos G.P., Molecular dynamics study of hydrogen adsorption in carbonaceous microporous materials and the effect of oxygen functional groups, International Journal of Hydrogen Energy, 32(12), pp.1999-2004, 2007.
[6] Carter, T.J., Cornish, L.A., Hydrogen in metals, Engineering Failure Analysis, 8(2), pp.113-121, 2001.
[7] Ahmed, S., Kumar, R., Krumpelt, M., Fuel processing for fuel cell power systems, Fuel Cells Bulletin, 2(12), pp.4-7, 1999.
[8] Barbir, F., Gomez, T., Efficiency and economics of proton exchange membrane (PEM) fuel cells, International Journal of Hydrogen Energy, 22(10-11), pp.1027-1037, 1997.
[9] Zhao, X., Ma, L., Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries, International Journal of Hydrogen Energy, 34(11), pp.4788-4796, 2009.
[10] Banerjee, S., Pillai, C.G.S., Majumder, C., Adsorption and desorption of hydrogen in Mg nanoclusters: combined effects of size and Ti doping, International Journal of Hydrogen Energy, 35(6), pp.2344-2350, 2010.
[11] Jain, I.P., Lal, C., Jain, A., Hydrogen Storage in Mg: A most promising material, International Journal of Hydrogen Energy, 35(10), pp.5133-5144, 2010.
[12] Lototskyy, M., Sibanyoni, J.M., Denys, R.V., Williams, M., Pollet, B.G., Yartys, V.A., Magnesium-carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen, Carbon, 57, pp.146-160, 2013.
[13] Shao, H.Y., Xin, G.B., Zheng, J., Li, X.G., Akiba, E., Nanotechnology in Mg-based materials for hydrogen storage, Nano Energy, 1(4), pp.590-601, 2012.
[14] Vennila, R.S., Drozd, V., George, L., Saxena, S.K., Liermann, H.P., Liu, H.Z., Stowe, A.C., Berseth, P., Anton, D., Zidan, R., Structural study of ball-milled sodium alanate under high pressure, Journal of Alloys and Compounds, 473(1-2), pp.576-578, 2009.
[15] 蘇順發,”儲氫材料”,科學發展,483期,p.17,2013.
[16] Libowitz, G.G., Hayes, H.F., Gibb, T.R.P., The system zirconium-nickel and hydrogen, Journal of physical chemistry, 62(1), pp.76-79, 1958.
[17] Zaluska, A., Zaluski, L., Strom-Olsen, J.O., Nanocrystalline magnesium for hydrogen storage, Journal of Alloys and Compounds, 288(1-2), pp.217-225, 1999.
[18] Dehouche, Z., Djaozandry, R., Goyette, J., Bose, T.K., Evaluation techniques of cycling effect on thermodynamic and crystal structure properties of Mg2Ni alloy, Journal of Alloys and Compounds, 288(1-2), pp.269-276, 1999.
[19] Hu, Y.Q., Zhang, H.F., Wang, A.M., Ding, B.Z., Hu, Z.Q., Preparation and hydriding/dehydriding properties of mechanically milled Mg-30 wt% TiMn1.5 composite, Journal of Alloys and Compounds, 354(1-2), pp.296-302, 2003.
[20] 閰正剛,“能源與材料 – 地球未來最有潛力的新能源:氫能源”,http://www.ch.ntu.edu.tw/~rsliu/pdf97/material/1.pdf
[21] 吳廣新,鎂基儲氫合金吸放氫熱力學和動力學研究,上海大學,博士論文,2009。
[22] Stampfer, J.F., Holley, C.E., Suttle, J.F., The magnesium-hydrogen system, Journal of the American Chemical Society, 82(14), pp.3504-3508, 1960.
[23] Reiser, A., Bogdanovic, B., Schlichte, K., The application of Mg-based metal-hydrides as heat energy storage systems, International Journal of Hydrogen Energy, 25(5), pp.425-430, 2000.
[24] Vigeholm, B., Kjoller, J., Larsen, B., Pedersen, A.S., Formation and decomposition of magnesium hydride, Journal of the less-common metals, 89(1), pp.135-144, 1983.
[25] Li, L.Q., Akiyama, T., Yagi, J., Effect of hydrogen pressure on the combustion synthesis of Mg2NiH4, Intermetallics, 7(2), pp.201-205, 1999.
[26] Akiyama, T., Tazaki, T.A., Takahashi, R., Yagi, J., Kinetics of hydrogen absorption and desorption of magnesium nickel alloy, Intermetallics, 4(8), pp.659-662, 1996.
[27] Huot, J., Liang, G., Boily, S., Van Neste, A., Schulz, R., Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride, Journal of Alloys and Compounds, 293, pp.495-500, 1999.
[28] Von Zeppelin, F., Reule, H., Hirscher, M., Hydrogen desorption kinetics of nanostructured MgH2 composite materials, Journal of Alloys and Compounds, 330, pp.723-726, 2002.
[29] 維基百科,二氧化鋯,
http://zh.wikipedia.org/wiki/%E4%BA%8C%E6%B0%A7%E5%8C%96%E9%94%86
[30] 台灣WiKi,二氧化鋯,
http://www.twwiki.com/wiki/%E4%BA%8C%E6%B0%A7%E5%8C%96%E9%8B%AF
[31] Geim, A.K., Novoselov, K.S., The rise of graphene, Nature Materials, 6(3), pp.183-191, 2007.
[32] Berger, C., Song, Z.M., Li, X. B., Wu, X.S., Brown, N., Naud, C., Mayou, D., Li, T.B., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., Electronic confinement and coherence in patterned epitaxial graphene, Science, 312(5777), pp.1191-1196, 2006.
[33] Blake, P., Brimicombe, P.D., Nair, R.R., Booth, T.J., Jiang, D., Schedin, F., Ponomarenko, L.A., Morozov, S.V., Glesson, H.F., Hill, E.W.,Geim, A.K., Novoselov, K.S., Graphene-based liquid crystal device, Nano Letters, 8(6), pp.1704-1708, 2008.
[34] Si, Y., Samulski, E.T., Synthesis of water soluble graphene, Nano Letters, 8(6), pp.1679-1682, 2008.
[35] de Heer, W.A., Berger, C., Wu, X.S., First, P.N., Conrad, E.H., Li, X.B., Li, T.B., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., Martinez, G., Epitaxial graphene, Solid State Communications, 143(1-2), pp.92-100, 2007.
[36] Park, S., Ruoff, R.S., Chemical methods for the production of graphenes, Nature Nanotechnology, 4(4), pp.217-224, 2009.
[37] Geng, Y., Wang, S.J., Kim, J.K., Preparation of graphite nanoplatelets and graphene sheets, Journal of Colloid and Interface Science, 336(2), pp.592-598, 20009.
[38] Pei, Q.X., Zhang, Y.W., Shenoy, V.B., A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene, 48(3), pp.898-904, 2010.
[39] Ewels, C.P., Heggie, M.I., Briddon, P.R., Adatoms and nanoengineering of carbon, Chemical Physics Letters, 351(3-4), pp.178-182, 2002.
[40] Ma, P.C., Mo, S.Y., Tang, B.Z., Kim, J.K., Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites, Carbon, 48(6), pp.1824-1834, 2010.
[41] Geng, Y., Li, J., Wang, S.J., Kim, J.K., Amino functionalization of graphite nanoplatelet, Journal of nanoscience and nanotechnology, 8(12), pp.6238-6246, 2008.
[42] Liu, Z.Y., He, D.W., Wang, Y.S., Wu, H.P., Wang, J.G., Solution-processable functionalized graphene in donor/acceptor-type organic photovoltaic cells, Solar Energy Materials and Solar Cells, 94(7), pp.1196-1200, 2010.
[43] Baby, T.T., Aravind, S.S.J., Arockiadoss, T., Rakhi, R.B., Ramaprabhu, S., Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor, Sensors and Actuators B-chemical, 145(1), pp.71-77, 2010.
[44] Iijima, S., Helical microtubules of graphitic carbon, Nature, 354(6348), pp.56-58, 1991.
[45] 簡士凱,應用非平衡態分子動力學於低維奈米材料熱傳導率之研究,國立成功大學機械工程學系,博士論文,2011。
[46] 維基百科,熱重分析,
http://zh.wikipedia.org/wiki/%E7%86%B1%E9%87%8D%E5%88%86%E6%9E%90
[47] 張勳承,應用分子動力學於合金團簇沉積製程之研究,國立成功大學機械工程學系,博士論文,2010。
[48] Allen, M.P., Tildesley, D.J., Computer simulation of liquids, Clarendon Press, Oxford, 1991.
[49] Haile, J.M., Molecular dynamic simulation:elementary methods, Wiley, New York, 1997.
[50] Rapaport, D.C., The art of molecular dynamics simulation, Cambridge University Press, Cambridge, 2004.
[51] Morse, P.M., Diatomic molecules according to the wave mechanics, II. Vibrational levels, Physical Review, 34(1), pp.57-67, 1929.
[52] Rafii-Tabar, H., Modeling the nano-scale phenomena in condensed matter physics via computer-based numerical experiment, Physics Reports, 325(6), pp.239-310, 2000.
[53] Gear, C.W., Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs, N. J., 1971.
[54] 朱訓鵬,分子動力學與平行運算於奈米薄膜沉積模擬之應用,國立成功大學機械工程學系,博士論文,2002。
[55] Toukmaji, A.Y., Board, J.A., Ewald summation techniques in perspective: A survey, Computer Physics Communications, 95(2-3), pp.73-92, 1996.
[56] Nosé, S., A molecular-dynamics method for simulations in the canonical ensemble, Molecular Physics, 52(2), pp.255-268, 1984.
[57] Nosé, S., A unified formulation of the constant temperature molecular-dynamics methods, Journal of Chemical Physics, 81(1), pp.511-519, 1984.
[58] Hoover, W.G., Canonical dynamics-equilibrium phase-space distributions, Physical Review A, 31(3), pp.1695-1697, 1985.
[59] Gainotti, A., Zecchina, L., A method for measuring small diffusion coefficients, Nuovo Cimento B, 40(1), pp.295-299, 1965.
[60] Makin, S.M., Rowe, A.H., Leclaire, A.D., Self-diffusion in gold, Proceedings of the Physical Society of London Section B, 70(6), pp.545-552, 1957.
[61] Tomizuka, C.T., Sonder, E., Self-diffusion in silver, Physical Review, 103(5), pp.1182-1184, 1956.
[62] 陳斌豪,陳朝光,張勳承,吳學陞,陳冠蓉,分子動力學計算於鎳金屬膜滲氫機制之研究,中國機械工程學會第二十三屆全國學術研討會論文集,A8-015,台南,台灣,2006。
[63] Chen, B.H., Chuang, C.H., Ahluwalia, R.K., Chang, M.L., Numerical simulation of hydrogen atom transport in thick nickel membrane using semi-empirical quantum model, International Journal of Hydrogen Energy, 34(24), pp.9824-9831, 2009.