| 研究生: |
林浚暘 Lin, Chun-Yang |
|---|---|
| 論文名稱: |
實現在具有非信任檢查節點的六光子糾纏交換網絡中量子同調之傳輸 Experimental Realization of Quantum Coherence Transfer in a Six-Photon Entanglement Swapping Network with Untrusted Checkpoint Nodes |
| 指導教授: |
李哲明
Li, Che-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 量子網路 、量子同調傳輸偵測 、六光子糾纏 、糾纏交換 、雷射多脈衝輸出異常 |
| 外文關鍵詞: | Quantum Network, Quantum Coherence Transfer Detection, Six-Photon Entanglement, Entanglement Swapping, Laser Multiple Pulse Output Issue |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
量子網路能實現量子通訊、分散式量子運算與量子資訊處理,其任務本質上涉及節點間量子同調的傳輸。然而在實際場域中,受限於設備可信度與系統存取性(對於整體複雜量子網路系統的了解知識或可測量及操作性),要驗證此過程極具挑戰;在設備可信且網路可被完整存取時,可用量子斷層掃描重建系統並驗證同調傳輸,但所需測量資源隨系統規模呈指數成長;而在更一般、設備可信度與系統存取性皆受限的情況下,完整斷層掃描便無法執行,只能依賴不需重建系統的驗證工具。這些限制促使我們探索具可擴展且所需資源最少的同調傳輸檢測策略。本論文提出一種與系統規模無關的同調傳輸準則:可容忍偵測能力未知的不可信檢查節點操作,僅需兩組標準基底測量設定即可驗證同調傳輸,且測量設定數量不隨網路節點增加,適用於設備可信度與系統存取性受限之實際情境;此外,本準則亦能於不同程度系統存取條件下驗證同調資源,例如內部結構已知、由多個獨立同調來源與聯合測量構成的三角量子網路。在實驗上,我們於光子量子網路中實現該準則,忠實地驗證量子同調於四光子與六光子糾纏交換量子網路之傳輸,並藉由刻意調整檢查節點性能模擬不完美硬體;同時,我們建構六光子糾纏源並提升穩定性與輸出品質,克服雷射多脈衝輸出異常對糾纏生成的影響;另於量子網路糾纏態主幹層級進行量子態保真度測量,結果與同調傳輸準則相互參照,從另一角度檢驗其可靠性。本論文提出在設備可信度與系統存取性皆受限之實際情境下仍可運作的量子同調傳輸準則,為在實際場域中落實量子同調傳輸於一般量子網路應用提供可擴展的驗證基礎。
Quantum network tasks inherently involve quantum coherence transfer between nodes, but verifying it is challenging under limited apparatus trustworthiness and restricted system access (i.e., incomplete network knowledge and limited measurement/control of components). Tomography can reconstruct and verify transfer with trusted devices and full access, but scales exponentially with size; with limited trust and access it is infeasible, so verification must avoid full reconstruction. We propose a system-size-independent criterion for coherence transfer detection that tolerates untrusted checkpoint nodes with unknown detection capabilities, requires two population measurement settings, and does not increase with network nodes, suitable for such scenarios. It certifies coherence resources across system access levels, including triangular quantum networks with independent coherence sources and joint measurements. In photonic quantum networks, we verify transfer in four- and six-photon entanglement swapping networks, tuning checkpoint performance to emulate imperfect hardware. We build a six-photon entanglement source and improve stability by addressing anomalous multiple pulse laser operation impacting entanglement generation. Entanglement backbone state-fidelity measurements provide a complementary reference to the criterion's reliability. Overall, the criterion remains operational with limited trustworthiness and restricted access, providing a scalable verification basis for practical quantum network tasks.
[1] H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008.
[2] S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018.
[3] A. Pirker and W. Dür, “A quantum network stack and protocols for reliable entanglement-based networks,” New Journal of Physics, vol. 21, p. 033003, mar 2019.
[4] B. Yurke and J. S. Denker, “Quantum network theory,” Phys. Rev. A, vol. 29, pp. 1419–1437, Mar 1984.
[5] G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Theoretical framework for quantum networks,” Phys. Rev. A, vol. 80, p. 022339, Aug 2009.
[6] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010.
[7] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A, vol. 86, p. 032324, Sep 2012.
[8] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, 2000.
[9] N. Gisin and R. Thew, “Quantum communication,” Nature Photonics, vol. 1, no. 3, pp. 165–171, 2007.
[10] X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A, vol. 72, p. 012326, Jul 2005.
[11] J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A, vol. 59, pp. 4249–4254, Jun 1999.
[12] D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature, vol. 402, no. 6760, pp. 390–393, 1999.
[13] N. H. Nickerson, J. F. Fitzsimons, and S. C. Benjamin, “Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links,” Phys. Rev. X, vol. 4, p. 041041, Dec 2014.
[14] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theoretical Computer Science, vol. 560, pp. 7–11, 2014. Theoretical Aspects of Quantum Cryptography–celebrating 30 years of BB84.
[15] A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett., vol. 67, pp. 661–663, Aug 1991.
[16] H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nature Photonics, vol. 8, no. 8, pp. 595–604, 2014.
[17] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett., vol. 70, pp. 1895–1899, Mar 1993.
[18] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997.
[19] X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature, vol. 489, no. 7415, pp. 269–273, 2012.
[20] M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A, vol. 59, pp. 1829–1834, Mar 1999.
[21] W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A, vol. 63, p. 042301, Mar 2001.
[22] C. Elliott, “Building the quantum network*,” New Journal of Physics, vol. 4, p. 46, jul 2002.
[23] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” Phys. Rev. Lett., vol. 81, pp. 5932–5935, Dec 1998.
[24] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature, vol. 484, no. 7393, pp. 195–200, 2012.
[25] W. McCutcheon, A. Pappa, B. A. Bell, A. McMillan, A. Chailloux, T. Lawson, M. Mafu, D. Markham, E. Diamanti, I. Kerenidis, et al., “Experimental verification of multipartite entanglement in quantum networks,” Nature Communications, vol. 7, no. 1, p. 13251, 2016.
[26] M. Amoretti and S. Carretta, “Entanglement verification in quantum networks with tampered nodes,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 3, pp. 598–604, 2020.
[27] J. Knörzer, D. Malz, and J. I. Cirac, “Cross-platform verification in quantum networks,” Physical Review A, vol. 107, no. 6, p. 062424, 2023.
[28] T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett., vol. 113, p. 140401, Sep 2014.
[29] A. Winter and D. Yang, “Operational resource theory of coherence,” Phys. Rev. Lett., vol. 116, p. 120404, Mar 2016.
[30] A. Streltsov, G. Adesso, and M. B. Plenio, “Colloquium: Quantum coherence as a resource,” Rev. Mod. Phys., vol. 89, p. 041003, Oct 2017.
[31] P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal, J. Heinsoo, Y. Salathé, A. Akin, S. Storz, J.-C. Besse, S. Gasparinetti, A. Blais, and A. Wallraff, “Deterministic quantum state transfer and remote entanglement using microwave photons,” Nature, vol. 558, no. 7709, pp. 264–267, 2018.
[32] C.-C. Kuo, S.-H. Chen, W.-T. Lee, H.-M. Chen, H. Lu, and C.-M. Li, “Quantum process capability,” Scientific Reports, vol. 9, no. 1, p. 20316, 2019.
[33] C.-M. Li, N. Lambert, Y.-N. Chen, G.-Y. Chen, and F. Nori, “Witnessing quantum coherence: from solid-state to biological systems,” Scientific Reports, vol. 2, no. 1, p. 885, 2012.
[34] C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N. Johnston, and G. Adesso, “Robustness of coherence: An operational and observable measure of quantum coherence,” Phys. Rev. Lett., vol. 116, p. 150502, Apr 2016.
[35] Y.-Q. Nie, H. Zhou, J.-Y. Guan, Q. Zhang, X. Ma, J. Zhang, and J.-W. Pan, “Quantum coherence witness with untrusted measurement devices,” Phys. Rev. Lett., vol. 123, p. 090502, Aug 2019.
[36] F. Bibak, F. Del Santo, and B. Dakić, “Quantum coherence in networks,” Phys. Rev. Lett., vol. 133, p. 230201, Dec 2024.
[37] A. Miranowicz, M. Bartkowiak, X. Wang, Y.-x. Liu, and F. Nori, “Testing nonclassicality in multimode fields: A unified derivation of classical inequalities,” Phys. Rev. A, vol. 82, p. 013824, Jul 2010.
[38] M. Piani, M. Cianciaruso, T. R. Bromley, C. Napoli, N. Johnston, and G. Adesso, “Robustness of asymmetry and coherence of quantum states,” Phys. Rev. A, vol. 93, p. 042107, Apr 2016.
[39] W. Zheng, Z. Ma, H. Wang, S.-M. Fei, and X. Peng, “Experimental demonstration of observability and operability of robustness of coherence,” Phys. Rev. Lett., vol. 120, p. 230504, Jun 2018.
[40] Z. Ma, Z. Zhang, Y. Dai, Y. Dong, and C. Zhang, “Detecting and estimating coherence based on coherence witnesses,” Phys. Rev. A, vol. 103, p. 012409, Jan 2021.
[41] M.-S. Li, W. Xu, S.-M. Fei, Z.-J. Zheng, and Y.-L. Wang, “Witnessing quantum coherence with prior knowledge of observables,” Phys. Rev. A, vol. 109, p. 032422, Mar 2024.
[42] A. J. Leggett and A. Garg, “Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks?,” Phys. Rev. Lett., vol. 54, pp. 857–860, Mar 1985.
[43] M. O. Scully and M. S. Zubairy, Quantum Optics. Cambridge University Press, 1997.
[44] D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon greenberger-horne-zeilinger entanglement,” Phys. Rev. Lett., vol. 82, pp. 1345–1349, Feb 1999.
[45] Z. Zhao, Y.-A. Chen, A.-N. Zhang, T. Yang, H. J. Briegel, and J.-W. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature, vol. 430, no. 6995, pp. 54–58, 2004.
[46] C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics, vol. 3, no. 2, pp. 91–95, 2007.
[47] X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett., vol. 120, p. 260502, Jun 2018.
[48] K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Phys. Rev. A, vol. 40, pp. 2847–2849, Sep 1989.
[49] U. Leonhardt, Measuring the Quantum State of Light, vol. 22. Cambridge University Press, 1997.
[50] H. Lu, C.-Y. Huang, Z.-D. Li, X.-F. Yin, R. Zhang, T.-L. Liao, Y.-A. Chen, C.-M. Li, and J.-W. Pan, “Counting classical nodes in quantum networks,” Phys. Rev. Lett., vol. 124, p. 180503, May 2020.
[51] W.-T. Kao, C.-Y. Huang, T.-J. Tsai, S.-H. Chen, S.-Y. Sun, Y.-C. Li, T.-L. Liao, C.-S. Chuu, H. Lu, and C.-M. Li, “Scalable determination of multipartite entanglement in quantum networks,” npj Quantum Information, vol. 10, no. 1, p. 73, 2024.
[52] A. Ishizaki and G. R. Fleming, “Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature,” Proceedings of the National Academy of Sciences, vol. 106, no. 41, pp. 17255–17260, 2009.
[53] A. Ishizaki, T. R. Calhoun, G. S. Schlau-Cohen, and G. R. Fleming, “Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer,” Phys. Chem. Chem. Phys., vol. 12, pp. 7319–7337, 2010.
[54] U. Leonhardt and H. Paul, “Measuring the quantum state of light,” Progress in Quantum Electronics, vol. 19, no. 2, pp. 89–130, 1995.
[55] I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” Journal of Modern Optics, vol. 44, no. 11-12, pp. 2455–2467, 1997.
[56] Y.-S. Liu, “Verification of necessary and sufficient quantum beneficial condition of quantum remote state preparation in entangled photon sagnac interferometer,” Master’s thesis, National Cheng Kung University, Tainan, Taiwan, 2023.
[57] Y. Aharonov and L. Vaidman, “Properties of a quantum system during the time interval between two measurements,” Phys. Rev. A, vol. 41, pp. 11–20, Jan 1990.
[58] G. C. Knee, S. Simmons, E. M. Gauger, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, K. M. Itoh, M. L. W. Thewalt, G. A. D. Briggs, and S. C. Ben145 jamin, “Violation of a leggett-garg inequality with ideal non-invasive measurements,” Nat Commun, vol. 3, p. 606, 2012.
[59] Y.-C. Li, “Efficient experimental detection of quantum coherence transmission in a sixphoton quantum network,” Master’s thesis, National Cheng Kung University, Tainan, Taiwan, 2023.
[60] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in matlab,” in 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508), pp. 284–289, IEEE, 2004.
[61] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “Sdpt3—a matlab software package for semidefinite programming, version 1.3,” Optimization Methods and Software, vol. 11, no. 1-4, pp. 545–581, 1999.
[62] E. D. Andersen and K. D. Andersen, “The mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm,” in High Performance Optimization, pp. 197–232, Springer, 2000.
[63] G. Tóth and O. Gühne, “Detecting genuine multipartite entanglement with two local measurements,” Physical Review Letters, vol. 94, p. 060501, 2005.
[64] A. N. Jordan and I. A. Siddiqi, Quantum Measurement: Theory and Practice. Cambridge, UK: Cambridge University Press, 1st ed., 2024.
[65] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Physical Review Letters, vol. 75, no. 24, pp. 4337–4341, 1995.
[66] C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “Generation of correlated photon pairs in type-ii parametric down conversion—revisited,” Journal of Modern Optics, vol. 48, no. 13, pp. 1997–2007, 2001.
[67] Y. Shih, “Entangled biphoton source—property and preparation,” Reports on Progress in Physics, vol. 66, no. 6, pp. 1009–1044, 2003.
[68] J.-H. Hsieh, “Theory of quantifying quantum-mechanical process and its application,” master’s thesis, National Central University, 2017.
[69] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev., vol. 47, pp. 777–780, May 1935.
[70] J. S. Bell, “On the einstein podolsky rosen paradox,” Physics Physique Fizika, vol. 1, pp. 195–200, Nov 1964.
[71] S.-Y. Sun, “Experimental capability of photon interference for generating six-photon entanglement,” Master’s thesis, National Cheng Kung University, Tainan, Taiwan, 2023.
[72] “Dual-stage toptica isolators.” Product page, TOPTICA Photonics, 2025. Tunable dual-stage Faraday optical isolators with ≥ 60 dB isolation and ≥ 80 % transmission; wavelength ranges 640–1100 nm; high power damage threshold (4 kW/cm²); angled internal components to reduce back reflection.
[73] O. Gobert, G. Mennerat, R. Maksimenka, N. Fedorov, M. Perdrix, D. Guillaumet, C. Ramond, J. Habib, C. Prigent, D. Vernhet, T. Oksenhendler, and M. Comte, “Efficient broadband 400 nm noncollinear second-harmonic generation of chirped femtosecond laser pulses in bbo and lbo,” Applied Optics, vol. 53, pp. 2646–2655, 04 2014.
[74] Excelitas Technologies, “Spcm-aqrh.” https://www.excelitas.com/product/spcm-aqrh, n.d. Accessed: 2025-06-02.
[75] Universal Quantum Devices, “Logic-16.” https://uqdevices.com/products/, n.d. Accessed: 2025-06-02.
[76] T.-J. Tsai, “Experimental realization of semi-device-independent one-way quantum computation,” Master’s thesis, National Cheng Kung University, Tainan, Taiwan, 2022.
[77] Edmund Optics, “780nm high performance laser line filter, 12.5mm dia,” 2025. Accessed: 2025-08-27.
[78] J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Physical Review Letters, vol. 86, no. 20, p. 4435, 2001.
[79] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Reviews of Modern Physics, vol. 84, no. 2, p. 777, 2012.
[80] Y.-B. Li, Q.-Y. Wen, Z.-C. Li, S.-J. Qin, and Y.-T. Yang, “Cheat sensitive quantum bit commitment via pre-and post-selected quantum states,” Quantum Information Processing, vol. 13, pp. 141–149, 2014.
[81] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell's theorem without inequalities,” American Journal of Physics, vol. 58, pp. 1131–1143, 12 1990.
[82] D.-G. Im, Y. Kim, and Y.-H. Kim, “Dispersion cancellation in a quantum interferometer with independent single photons,” Optics Express, vol. 29, no. 2, pp. 2348–2363, 2021.
[83] Coherent Inc., Mira Optima 900-F Laser Operator’s Manual. 5100 Patrick Henry Drive, Santa Clara, CA 95054, 2005. Available from Coherent Inc.
[84] APE GmbH, “Mini tpa/pd autocorrelator for pulse width measurements.” Online, 2025. https://www.ape-berlin.de/en/autocorrelator/mini-tpa/.
[85] W. Demtröder, Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular- and Quantum Physics. Graduate Texts in Physics, Springer Berlin Heidelberg, 2019.
[86] M. Lai, J. Nicholson, and W. Rudolph, “Multiple pulse operation of a femtosecond ti:sapphire laser,” Optics Communications, vol. 142, pp. 45–49, 1997.
[87] J. E. Rothenberg, “Pulse splitting during self-focusing in normally dispersive media,” Opt. Lett., vol. 17, pp. 583–585, Apr 1992.
[88] J. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena. Optics and photonics, Academic Press, 2006.
[89] J.-w. Pan and A. Zeilinger, “Greenberger-horne-zeilinger-state analyzer,” Phys. Rev. A, vol. 57, pp. 2208–2211, Mar 1998.
[90] M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, ““event-ready-detectors” bell experiment via entanglement swapping,” Phys. Rev. Lett., vol. 71, pp. 4287–4290, Dec 1993.
[91] J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: Entangling photons that never interacted,” Phys. Rev. Lett., vol. 80, pp. 3891–3894, May 1998.
[92] M. Hein, J. Eisert, and H. J. Briegel, “Multiparty entanglement in graph states,” Phys. Rev. A, vol. 69, p. 062311, Jun 2004.
[93] C. Meignant, D. Markham, and F. Grosshans, “Distributing graph states over arbitrary quantum networks,” Phys. Rev. A, vol. 100, p. 052333, Nov 2019.
[94] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett., vol. 86, pp. 5188–5191, May 2001.
[95] A. Fox, Quantum Optics: An Introduction. Oxford Master Series in Physics, OUP Oxford, 2006.
[96] D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett., vol. 95, p. 010501, Jun 2005.
[97] T. P. Bodiya and L.-M. Duan, “Scalable generation of graph-state entanglement through realistic linear optics,” Phys. Rev. Lett., vol. 97, p. 143601, Oct 2006.
[98] M. Van den Nest, J. Dehaene, and B. De Moor, “Graphical description of the action of local clifford transformations on graph states,” Phys. Rev. A, vol. 69, p. 022316, Feb 2004.
[99] L. Vandré, J. de Jong, F. Hahn, A. Burchardt, O. Gühne, and A. Pappa, “Distinguishing graph states by the properties of their marginals,” Phys. Rev. A, vol. 111, p. 052449, May 2025.
[100] Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X, vol. 6, p. 011024, Mar 2016.
[101] K. Azuma, S. E. Economou, D. Elkouss, P. Hilaire, L. Jiang, H.-K. Lo, and I. Tzitrin, “Quantum repeaters: From quantum networks to the quantum internet,” Rev. Mod. Phys., vol. 95, p. 045006, Dec 2023.
[102] D. Poderini, I. Agresti, G. Marchese, E. Polino, T. Giordani, A. Suprano, M. Valeri, G. Milani, N. Spagnolo, G. Carvacho, R. Chaves, and F. Sciarrino, “Experimental violation of n-locality in a star quantum network,” Nature Communications, vol. 11, no. 1, p. 2467, 2020.
[103] X.-M. Gu, L. Huang, A. Pozas-Kerstjens, Y.-F. Jiang, D. Wu, B. Bai, Q.-C. Sun, M.-C. Chen, J. Zhang, S. Yu, Q. Zhang, C.-Y. Lu, and J.-W. Pan, “Experimental full network nonlocality with independent sources and strict locality constraints,” Phys. Rev. Lett., vol. 130, p. 190201, May 2023.
[104] S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, no. 7911, pp. 663–668, 2022.
[105] M.-O. Renou, E. Bäumer, S. Boreiri, N. Brunner, N. Gisin, and S. Beigi, “Genuine quantum nonlocality in the triangle network,” Phys. Rev. Lett., vol. 123, p. 140401, Sep 2019.
[106] A. Tavakoli, A. Pozas-Kerstjens, M.-X. Luo, and M.-O. Renou, “Bell nonlocality in networks,” Reports on Progress in Physics, vol. 85, p. 056001, mar 2022.
[107] P. Sekatski, S. Boreiri, and N. Brunner, “Partial self-testing and randomness certification in the triangle network,” Phys. Rev. Lett., vol. 131, p. 100201, Sep 2023.
[108] S. Boreiri, B. Ulu, N. Brunner, and P. Sekatski, “Noise-robust proofs of quantum network nonlocality,” Quantum, vol. 9, p. 1830, Aug. 2025.
[109] M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Overcoming the rate–distance limit of quantum key distribution without quantum repeaters,” Nature, vol. 557, no. 7705, pp. 400–403, 2018.
[110] X. Ma, P. Zeng, and H. Zhou, “Phase-matching quantum key distribution,” Phys. Rev. X, vol. 8, p. 031043, Aug 2018.
[111] Y. Zhang, X. Chen, and E. Chitambar, “Building Multiple Access Channels with a Single Particle,” Quantum, vol. 6, p. 653, Feb. 2022.
[112] F. Massa, P. Yadav, A. Moqanaki, W. O. Krawec, P. Mateus, N. Paunković, A. Souto, and P. Walther, “Experimental Semi-quantum Key Distribution With Classical Users,” Quantum, vol. 6, p. 819, Sept. 2022.