| 研究生: |
俞鈞和 Yu, Chun-Han |
|---|---|
| 論文名稱: |
發展精準化醫學DNA疫苗 Development of DNA Vaccine for Precision Medicine |
| 指導教授: |
賴明德
Lai, Ming-Derg |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 精準化醫學 、免疫治療 、DNA疫苗 |
| 外文關鍵詞: | Precision medicine, Immunotherapy, DNA vaccine |
| 相關次數: | 點閱:37 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,癌症免疫療法成為癌症治療中日益突出的議題。癌症免疫療法在通過選擇性地增加針對腫瘤特異性抗原的T細胞群來增強免疫系統,從而引發癌細胞死亡。而免疫療法的理想目標是腫瘤特異性突變,針對腫瘤特異性突變可以減緩癌症的進展並且具有較少的副作用。因此,迫切需要選擇腫瘤特異性突變和開發用於癌症進展的適當免疫治療策略。在此期間,全基因組定序的發展使得個人化免疫療法成為可能。儘管腫瘤細胞的突變在每個癌症患者中是特異性的,但癌症患者仍然存在2%的共同突變。因此,本篇研究目的為以合理的成本開發針對癌症患者的腫瘤特異性突變的個人化免疫療法。由於成本低,安全性高,DNA疫苗是一種經濟實惠的平台。為了研究DNA疫苗在個性化免疫治療中的潛力,我們想了解針對由腫瘤特異性突變編碼的腫瘤特異性新抗原的DNA疫苗是否可以延緩腫瘤進展。先前的研究已在B16F10黑色素瘤中鑑定了幾種免疫原性新表位。因此,我們基於鑑定的突變肽片段設計了多個新表位DNA疫苗。此外,利用密碼子使用偏好和tRNA拷貝數來優化DNA疫苗。為了在體外觀察DNA疫苗的表達,我們構建了帶有GFP-tag的DNA疫苗。我們通過西方點墨法和螢光顯微鏡觀察轉染到HEK293T和B16F10中的GFP-tag的DNA疫苗會表達出在疫苗上的蛋白片段。為了研究多表位DNA疫苗在B16F10黑色素瘤動物模型中的治療效果,我們通過皮下注射將B16F10細胞植入C57BL/6小鼠,並在腫瘤可觸知時用多表位DNA疫苗進行免疫治療。我們的數據顯示,DNA疫苗有效減弱了B16F10原位腫瘤模型中的腫瘤生長。在腫瘤組織免疫染色的結果分析顯示在經過DNA疫苗的治療後增加了CD4+和CD8+T細胞在腫瘤組織的浸潤,並且流式細胞術分析顯示樹突細胞群在淋巴結以及脾臟中增加。這些數據顯示DNA疫苗將通過樹突細胞引發抗腫瘤免疫反應並增加CD4+和CD8+T細胞。雖然仍需要進一步調查,但我們認為這樣的癌症疫苗新方法可能會對癌症治療方法帶來更多的可能性及潛在的希望。
In recent years, cancer immunotherapy plays an increasingly prominent role in the treatment of cancer. The cancer immunotherapy aims to boost the immune system by selectively increasing the population of T cells, which specifically targeted to the tumor-unique antigens, thereby initiating cancer cell death. Meanwhile, an ideal target for immunotherapy is tumor-specific mutations, and targeting tumor-specific mutation leads to reducing the progression of cancer and having less side effect. Consequently, there is an urgent need to select suitable tumor-specific mutation and development appropriate immunotherapeutic strategy for cancer progression. In the interval, the development of whole-genome sequencing makes the personalized immunotherapy possible. Although the mutations of tumor cells are specific in cancer patients, there are still 2% mutations shared in cancer patients. Therefore, the present study aimed to develop personalized immunotherapy against tumor-specific mutations for cancer patients at a reasonable cost. Until now, the DNA vaccine is an affordable platform due to the low cost and high safety. To study the potential of DNA vaccine in personalized immunotherapy, we investigate whether DNA vaccine targeting tumor-specific neo-antigens encoded by tumor-specific mutations can delay the tumor progression. Several immunogenic neo-epitopes were identified in B16 melanoma. Therefore, we designed multiple neo-epitope DNA vaccine based on the identified mutation peptide fragment. Furthermore, the codon usage bias and tRNA copy number were considered to optimize DNA vaccine. To observe the expression of the DNA vaccine in vitro, we constructed a GFP-tag DNA vaccine and observed the protein expression in HEK293T and B16F10 by western blotting and fluorescence microscope, respectively. To further investigate the therapeutic effect of multiple-epitope DNA vaccine in B16F10 melanoma animal model, we implanted B16F10 cells into C57BL/6 mice by subcutaneous injection and performed immunotherapy with multiple-epitope DNA vaccine when the tumor was palpable. Our data indicated that the DNA vaccine attenuated tumor growth in B16F10 orthotopic model. The analysis of immunohistochemistry showed that the infiltration of CD4+ and CD8+ T cells increased in tumor tissues. The flow cytometry analysis revealed that dendritic cell population increased in the lymph node and spleen. These data indicated that DNA vaccine would elicit antitumor immune responses via dendritic cell and increase CD4+ and CD8+ T cells. Although further investigations are still required, our new approach to discovering cancer vaccine may shed unique insight into the treatment with cancer.
1. Akbari, O.; Panjwani, N.; Garcia, S.; Tascon, R.; Lowrie, D.; Stockinger, B., DNA vaccination: transfection and activation of dendritic cells as key events for immunity. Int J Clin Exp Med 1999, 189 (1), 169-178.
2. Aurisicchio, L.; Salvatori, E.; Lione, L.; Bandini, S.; Pallocca, M.; Maggio, R.; Fanciulli, M.; De Nicola, F.; Goeman, F.; Ciliberto, G.; Conforti, A.; Luberto, L.; Palombo, F., Poly-specific neoantigen-targeted cancer vaccines delay patient derived tumor growth. J Exp Clin Cancer Res 2019, 38 (1), 78-78.
3. Bazzani, R. P.; Cai, Y.; Hebel, H. L.; Hyde, S. C.; Gill, D. R., The significance of plasmid DNA preparations contaminated with bacterial genomic DNA on inflammatory responses following delivery of lipoplexes to the murine lung. Biomaterials 2011, 32 (36), 9854-65.
4. Bhandaru, M.; Rotte, A., Monoclonal Antibodies for the Treatment of Melanoma: Present and Future Strategies. Methods Mol Biol 2019, 1904, 83-108.
5. Bohm, W.; Thoma, S.; Leithauser, F.; Moller, P.; Schirmbeck, R.; Reimann, J., T cell-mediated, IFN-gamma-facilitated rejection of murine B16 melanomas. J Immunol 1998, 161 (2), 897-908.
6. Cardones, A. R.; Banez, L. L., VEGF inhibitors in cancer therapy. Curr Pharm Des 2006, 12 (3), 387-94.
7. Carmeliet, P., VEGF as a key mediator of angiogenesis in cancer. Oncology 2005, 69 Suppl 3, 4-10.
8. Carnes, A. E.; Williams, J. A., Plasmid DNA manufacturing technology. Recent Pat Biotechnol 2007, 1 (2), 151-66.
9. Castle, J. C.; Kreiter, S.; Diekmann, J.; Löwer, M.; van de Roemer, N.; de Graaf, J.; Selmi, A.; Diken, M.; Boegel, S.; Paret, C.; Koslowski, M.; Kuhn, A. N.; Britten, C. M.; Huber, C.; Türeci, Ö.; Sahin, U., Exploiting the Mutanome for Tumor Vaccination. Cancer Res 2012, 72 (5), 1081.
10. Castle, J. C.; Loewer, M.; Boegel, S.; de Graaf, J.; Bender, C.; Tadmor, A. D.; Boisguerin, V.; Bukur, T.; Sorn, P.; Paret, C.; Diken, M.; Kreiter, S.; Türeci, Ö.; Sahin, U., Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma. BMC Genomics 2014, 15 (1), 190.
11. Chan, R. C.; Gutierrez, B.; Ichim, T. E.; Lin, F., Enhancement of DNA cancer vaccine efficacy by combination with anti-angiogenesis in regression of established subcutaneous B16 melanoma. Oncol Rep 2009, 22 (5), 1197-203.
12. Chan, T. A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S. A.; Stenzinger, A.; Peters, S., Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 2019, 30 (1), 44-56.
13. Chen, C. A.; Chang, M. C.; Sun, W. Z.; Chen, Y. L.; Chiang, Y. C.; Hsieh, C. Y.; Chen, S. M.; Hsiao, P. N.; Cheng, W. F., Noncarrier naked antigen-specific DNA vaccine generates potent antigen-specific immunologic responses and antitumor effects. Gene Ther 2009, 16, 776.
14. Cheng, L.; Lopez-Beltran, A.; Massari, F.; MacLennan, G. T.; Montironi, R., Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. Mod Pathol 2018, 31 (1), 24-38.
15. Cho, H.-I.; Celis, E., Design of immunogenic and effective multi-epitope DNA vaccines for melanoma. Cancer Immunol Immunother 2012, 61 (3), 343-351.
16. Ciriello, G.; Miller, M. L.; Aksoy, B. A.; Senbabaoglu, Y.; Schultz, N.; Sander, C., Emerging landscape of oncogenic signatures across human cancers. Nat Genet 2013, 45 (10), 1127-33.
17. De Pas, T.; Giovannini, M.; Rescigno, M.; Catania, C.; Toffalorio, F.; Spitaleri, G.; Delmonte, A.; Barberis, M.; Spaggiari, L.; Solli, P.; Veronesi, G.; De Braud, F., Vaccines in non-small cell lung cancer: rationale, combination strategies and update on clinical trials. Crit Rev Oncol Hematol 2012, 83 (3), 432-43.
18. Duperret, E. K.; Perales-Puchalt, A.; Stoltz, R.; G, H. H.; Mandloi, N.; Barlow, J.; Chaudhuri, A.; Sardesai, N. Y.; Weiner, D. B., A Synthetic DNA, Multi-Neoantigen Vaccine Drives Predominately MHC Class I CD8(+) T-cell Responses, Impacting Tumor Challenge. Cancer Immunol Res 2019, 7 (2), 174-182.
19. Fioretti, D.; Iurescia, S.; Fazio, V. M.; Rinaldi, M., DNA Vaccines: Developing New Strategies against Cancer. J Biomed Biotechnol 2010, 2010, 174378.
20. Firozi, P.; Zhang, W.; Chen, L.; Quiocho, F. A.; Worley, K. C.; Templeton, N. S., Identification and removal of colanic acid from plasmid DNA preparations: implications for gene therapy. Gene Ther 2010, 17 (12), 1484-99.
21. Fuller, D. H.; Loudon, P.; Schmaljohn, C., Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods 2006, 40 (1), 86-97.
22. Gerlinger, M.; Rowan, A. J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; Varela, I.; Phillimore, B.; Begum, S.; McDonald, N. Q.; Butler, A.; Jones, D.; Raine, K.; Latimer, C.; Santos, C. R.; Nohadani, M.; Eklund, A. C.; Spencer-Dene, B.; Clark, G.; Pickering, L.; Stamp, G.; Gore, M.; Szallasi, Z.; Downward, J.; Futreal, P. A.; Swanton, C., Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012, 366 (10), 883-892.
23. Gilboa, E., The makings of a tumor rejection antigen. Immunity 1999, 11 (3), 263-70.
24. Hanahan, D.; Weinberg, R. A., The hallmarks of cancer. Cell 2000, 100 (1), 57-70.
25. Hanahan, D.; Weinberg, R. A., Hallmarks of cancer: the next generation. Cell 2011, 144 (5), 646-74.
26. Heemskerk, B.; Kvistborg, P.; Schumacher, T. N., The cancer antigenome. Embo j 2013, 32 (2), 194-203.
27. Hidmark, A.; von Saint Paul, A.; Dalpke, A. H., Cutting edge: TLR13 is a receptor for bacterial RNA. J Immunol 2012, 189 (6), 2717-21.
28. Holtkamp, S.; Kreiter, S.; Selmi, A.; Simon, P.; Koslowski, M.; Huber, C.; Tureci, O.; Sahin, U., Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 2006, 108 (13), 4009-17.
29. Kakimi, K.; Karasaki, T.; Matsushita, H.; Sugie, T., Advances in personalized cancer immunotherapy. Breast Cancer 2017, 24 (1), 16-24.
30. Keskin, D. B.; Anandappa, A. J.; Sun, J.; Tirosh, I.; Mathewson, N. D.; Li, S.; Oliveira, G.; Giobbie-Hurder, A.; Felt, K.; Gjini, E.; Shukla, S. A.; Hu, Z.; Li, L.; Le, P. M.; Allesøe, R. L.; Richman, A. R.; Kowalczyk, M. S.; Abdelrahman, S.; Geduldig, J. E.; Charbonneau, S.; Pelton, K.; Iorgulescu, J. B.; Elagina, L.; Zhang, W.; Olive, O.; McCluskey, C.; Olsen, L. R.; Stevens, J.; Lane, W. J.; Salazar, A. M.; Daley, H.; Wen, P. Y.; Chiocca, E. A.; Harden, M.; Lennon, N. J.; Gabriel, S.; Getz, G.; Lander, E. S.; Regev, A.; Ritz, J.; Neuberg, D.; Rodig, S. J.; Ligon, K. L.; Suvà, M. L.; Wucherpfennig, K. W.; Hacohen, N.; Fritsch, E. F.; Livak, K. J.; Ott, P. A.; Wu, C. J.; Reardon, D. A., Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 2019, 565 (7738), 234-239.
31. Kinzler, K. W.; Vogelstein, B., Landscaping the cancer terrain. Science 1998, 280 (5366), 1036-7.
32. Koebel, C. M.; Vermi, W.; Swann, J. B.; Zerafa, N.; Rodig, S. J.; Old, L. J.; Smyth, M. J.; Schreiber, R. D., Adaptive immunity maintains occult cancer in an equilibrium state. Nature 2007, 450 (7171), 903-7.
33. Kreiter, S.; Vormehr, M.; van de Roemer, N.; Diken, M.; Löwer, M.; Diekmann, J.; Boegel, S.; Schrörs, B.; Vascotto, F.; Castle, J. C.; Tadmor, A. D.; Schoenberger, S. P.; Huber, C.; Türeci, Ö.; Sahin, U., Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015, 520 (7549), 692-6.
34. Lauterbach, H.; Gruber, A.; Ried, C.; Cheminay, C.; Brocker, T., Insufficient APC capacities of dendritic cells in gene gun-mediated DNA vaccination. J Immunol 2006, 176 (8), 4600-7.
35. Lawrence, M. S.; Stojanov, P.; Mermel, C. H.; Garraway, L. A.; Golub, T. R.; Meyerson, M.; Gabriel, S. B.; Lander, E. S.; Getz, G., Discovery and saturation analysis of cancer genes across 21 tumor types. Nature 2014, 505 (7484), 495-501.
36. Lawrence, M. S.; Stojanov, P.; Polak, P.; Kryukov, G. V.; Cibulskis, K.; Sivachenko, A.; Carter, S. L.; Stewart, C.; Mermel, C. H.; Roberts, S. A.; Kiezun, A.; Hammerman, P. S.; McKenna, A.; Drier, Y.; Zou, L.; Ramos, A. H.; Pugh, T. J.; Stransky, N.; Helman, E.; Kim, J.; Sougnez, C.; Ambrogio, L.; Nickerson, E.; Shefler, E.; Cortés, M. L.; Auclair, D.; Saksena, G.; Voet, D.; Noble, M.; DiCara, D.; Lin, P.; Lichtenstein, L.; Heiman, D. I.; Fennell, T.; Imielinski, M.; Hernandez, B.; Hodis, E.; Baca, S.; Dulak, A. M.; Lohr, J.; Landau, D.-A.; Wu, C. J.; Melendez-Zajgla, J.; Hidalgo-Miranda, A.; Koren, A.; McCarroll, S. A.; Mora, J.; Crompton, B.; Onofrio, R.; Parkin, M.; Winckler, W.; Ardlie, K.; Gabriel, S. B.; Roberts, C. W. M.; Biegel, J. A.; Stegmaier, K.; Bass, A. J.; Garraway, L. A.; Meyerson, M.; Golub, T. R.; Gordenin, D. A.; Sunyaev, S.; Lander, E. S.; Getz, G., Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499 (7457), 214-218.
37. Li, J.; Valentin, A.; Beach, R. K.; Alicea, C.; Felber, B. K.; Pavlakis, G. N., DNA is an efficient booster of dendritic cell-based vaccine. Hum Vaccin Immunother 2015, 11 (8), 1927-1935.
38. Mac Gabhann, F.; Popel, A. S., Systems biology of vascular endothelial growth factors. Microcirculation 2008, 15 (8), 715-38.
39. Martin, S. D.; Coukos, G.; Holt, R. A.; Nelson, B. H., Targeting the undruggable: immunotherapy meets personalized oncology in the genomic era. Ann Oncol 2015, 26 (12), 2367-2374.
40. Murphy, J. F., Trends in cancer immunotherapy. Clin Med Insights Oncol 2010, 4, 67-80.
41. Nagasawa, D. T.; Fong, C.; Yew, A.; Spasic, M.; Garcia, H. M.; Kruse, C. A.; Yang, I., Passive immunotherapeutic strategies for the treatment of malignant gliomas. Neurosurg Clin N Am 2012, 23 (3), 481-495.
42. Nakagawa, H.; Fujita, M., Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci 2018, 109 (3), 513-522.
43. Nam, G.-H.; Lee, E. J.; Kim, Y. K.; Hong, Y.; Choi, Y.; Ryu, M.-J.; Woo, J.; Cho, Y.; Ahn, D. J.; Yang, Y.; Kwon, I.-C.; Park, S.-Y.; Kim, I.-S., Combined Rho-kinase inhibition and immunogenic cell death triggers and propagates immunity against cancer. Nat Commun 2018, 9 (1), 2165.
44. O'Brien, S. G.; Guilhot, F.; Larson, R. A.; Gathmann, I.; Baccarani, M.; Cervantes, F.; Cornelissen, J. J.; Fischer, T.; Hochhaus, A.; Hughes, T.; Lechner, K.; Nielsen, J. L.; Rousselot, P.; Reiffers, J.; Saglio, G.; Shepherd, J.; Simonsson, B.; Gratwohl, A.; Goldman, J. M.; Kantarjian, H.; Taylor, K.; Verhoef, G.; Bolton, A. E.; Capdeville, R.; Druker, B. J., Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003, 348 (11), 994-1004.
45. Paez, J. G.; Janne, P. A.; Lee, J. C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F. J.; Lindeman, N.; Boggon, T. J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M. J.; Sellers, W. R.; Johnson, B. E.; Meyerson, M., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004, 304 (5676), 1497-500.
46. Porgador, A.; Irvine, K. R.; Iwasaki, A.; Barber, B. H.; Restifo, N. P.; Germain, R. N., Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 1998, 188 (6), 1075-1082.
47. Sabado, R. L.; Balan, S.; Bhardwaj, N., Dendritic cell-based immunotherapy. Cell Res 2016, 27, 74.
48. Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B. P.; Simon, P.; Lower, M.; Bukur, V.; Tadmor, A. D.; Luxemburger, U.; Schrors, B.; Omokoko, T.; Vormehr, M.; Albrecht, C.; Paruzynski, A.; Kuhn, A. N.; Buck, J.; Heesch, S.; Schreeb, K. H.; Muller, F.; Ortseifer, I.; Vogler, I.; Godehardt, E.; Attig, S.; Rae, R.; Breitkreuz, A.; Tolliver, C.; Suchan, M.; Martic, G.; Hohberger, A.; Sorn, P.; Diekmann, J.; Ciesla, J.; Waksmann, O.; Bruck, A. K.; Witt, M.; Zillgen, M.; Rothermel, A.; Kasemann, B.; Langer, D.; Bolte, S.; Diken, M.; Kreiter, S.; Nemecek, R.; Gebhardt, C.; Grabbe, S.; Holler, C.; Utikal, J.; Huber, C.; Loquai, C.; Tureci, O., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017, 547 (7662), 222-226.
49. Sahin, U.; Tureci, O., Personalized vaccines for cancer immunotherapy. Science 2018, 359 (6382), 1355-1360.
50. Schumacher, T. N.; Schreiber, R. D., Neoantigens in cancer immunotherapy. Science 2015, 348 (6230), 69.
51. Sharma, P.; Allison, J. P., The future of immune checkpoint therapy. Science 2015, 348 (6230), 56-61.
52. Shendure, J.; Ji, H., Next-generation DNA sequencing. Nat Biotechnol 2008, 26, 1135.
53. Sjoblom, T.; Jones, S.; Wood, L. D.; Parsons, D. W.; Lin, J.; Barber, T. D.; Mandelker, D.; Leary, R. J.; Ptak, J.; Silliman, N.; Szabo, S.; Buckhaults, P.; Farrell, C.; Meeh, P.; Markowitz, S. D.; Willis, J.; Dawson, D.; Willson, J. K.; Gazdar, A. F.; Hartigan, J.; Wu, L.; Liu, C.; Parmigiani, G.; Park, B. H.; Bachman, K. E.; Papadopoulos, N.; Vogelstein, B.; Kinzler, K. W.; Velculescu, V. E., The consensus coding sequences of human breast and colorectal cancers. Science 2006, 314 (5797), 268-74.
54. Stripecke, R.; Carmen Villacres, M.; Skelton, D.; Satake, N.; Halene, S.; Kohn, D., Immune response to green fluorescent protein: implications for gene therapy. Gene Ther 1999, 6 (7), 1305-12.
55. Tannock, I. F.; Hickman, J. A., Limits to Personalized Cancer Medicine. N Engl J Med 2016, 375 (13), 1289-94.
56. Tran, E.; Ahmadzadeh, M.; Lu, Y. C.; Gros, A.; Turcotte, S.; Robbins, P. F.; Gartner, J. J.; Zheng, Z.; Li, Y. F.; Ray, S.; Wunderlich, J. R.; Somerville, R. P.; Rosenberg, S. A., Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 2015, 350 (6266), 1387-90.
57. Trimble, C.; Lin, C. T.; Hung, C. F.; Pai, S.; Juang, J.; He, L.; Gillison, M.; Pardoll, D.; Wu, L.; Wu, T. C., Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine 2003, 21 (25-26), 4036-42.
58. Venter, J. C.; Adams, M. D.; Myers, E. W.; Li, P. W.; Mural, R. J.; Sutton, G. G.; Smith, H. O.; Yandell, M.; Evans, C. A.; Holt, R. A.; Gocayne, J. D.; Amanatides, P.; Ballew, R. M.; Huson, D. H.; Wortman, J. R.; Zhang, Q.; Kodira, C. D.; Zheng, X. H.; Chen, L.; Skupski, M.; Subramanian, G.; Thomas, P. D.; Zhang, J.; Gabor Miklos, G. L.; Nelson, C.; Broder, S.; Clark, A. G.; Nadeau, J.; McKusick, V. A.; Zinder, N.; Levine, A. J.; Roberts, R. J.; Simon, M.; Slayman, C.; Hunkapiller, M.; Bolanos, R.; Delcher, A.; Dew, I.; Fasulo, D.; Flanigan, M.; Florea, L.; Halpern, A.; Hannenhalli, S.; Kravitz, S.; Levy, S.; Mobarry, C.; Reinert, K.; Remington, K.; Abu-Threideh, J.; Beasley, E.; Biddick, K.; Bonazzi, V.; Brandon, R.; Cargill, M.; Chandramouliswaran, I.; Charlab, R.; Chaturvedi, K.; Deng, Z.; Francesco, V. D.; Dunn, P.; Eilbeck, K.; Evangelista, C.; Gabrielian, A. E.; Gan, W.; Ge, W.; Gong, F.; Gu, Z.; Guan, P.; Heiman, T. J.; Higgins, M. E.; Ji, R.-R.; Ke, Z.; Ketchum, K. A.; Lai, Z.; Lei, Y.; Li, Z.; Li, J.; Liang, Y.; Lin, X.; Lu, F.; Merkulov, G. V.; Milshina, N.; Moore, H. M.; Naik, A. K.; Narayan, V. A.; Neelam, B.; Nusskern, D.; Rusch, D. B.; Salzberg, S.; Shao, W.; Shue, B.; Sun, J.; Wang, Z. Y.; Wang, A.; Wang, X.; Wang, J.; Wei, M.-H.; Wides, R.; Xiao, C.; Yan, C.; Yao, A.; Ye, J.; Zhan, M.; Zhang, W.; Zhang, H.; Zhao, Q.; Zheng, L.; Zhong, F.; Zhong, W.; Zhu, S. C.; Zhao, S.; Gilbert, D.; Baumhueter, S.; Spier, G.; Carter, C.; Cravchik, A.; Woodage, T.; Ali, F.; An, H.; Awe, A.; Baldwin, D.; Baden, H.; Barnstead, M.; Barrow, I.; Beeson, K.; Busam, D.; Carver, A.; Center, A.; Cheng, M. L.; Curry, L.; Danaher, S.; Davenport, L.; Desilets, R.; Dietz, S.; Dodson, K.; Doup, L.; Ferriera, S.; Garg, N.; Gluecksmann, A.; Hart, B.; Haynes, J.; Haynes, C.; Heiner, C.; Hladun, S.; Hostin, D.; Houck, J.; Howland, T.; Ibegwam, C.; Johnson, J.; Kalush, F.; Kline, L.; Koduru, S.; Love, A.; Mann, F.; May, D.; McCawley, S.; McIntosh, T.; McMullen, I.; Moy, M.; Moy, L.; Murphy, B.; Nelson, K.; Pfannkoch, C.; Pratts, E.; Puri, V.; Qureshi, H.; Reardon, M.; Rodriguez, R.; Rogers, Y.-H.; Romblad, D.; Ruhfel, B.; Scott, R.; Sitter, C.; Smallwood, M.; Stewart, E.; Strong, R.; Suh, E.; Thomas, R.; Tint, N. N.; Tse, S.; Vech, C.; Wang, G.; Wetter, J.; Williams, S.; Williams, M.; Windsor, S.; Winn-Deen, E.; Wolfe, K.; Zaveri, J.; Zaveri, K.; Abril, J. F.; Guigó, R.; Campbell, M. J.; Sjolander, K. V.; Karlak, B.; Kejariwal, A.; Mi, H.; Lazareva, B.; Hatton, T.; Narechania, A.; Diemer, K.; Muruganujan, A.; Guo, N.; Sato, S.; Bafna, V.; Istrail, S.; Lippert, R.; Schwartz, R.; Walenz, B.; Yooseph, S.; Allen, D.; Basu, A.; Baxendale, J.; Blick, L.; Caminha, M.; Carnes-Stine, J.; Caulk, P.; Chiang, Y.-H.; Coyne, M.; Dahlke, C.; Mays, A. D.; Dombroski, M.; Donnelly, M.; Ely, D.; Esparham, S.; Fosler, C.; Gire, H.; Glanowski, S.; Glasser, K.; Glodek, A.; Gorokhov, M.; Graham, K.; Gropman, B.; Harris, M.; Heil, J.; Henderson, S.; Hoover, J.; Jennings, D.; Jordan, C.; Jordan, J.; Kasha, J.; Kagan, L.; Kraft, C.; Levitsky, A.; Lewis, M.; Liu, X.; Lopez, J.; Ma, D.; Majoros, W.; McDaniel, J.; Murphy, S.; Newman, M.; Nguyen, T.; Nguyen, N.; Nodell, M.; Pan, S.; Peck, J.; Peterson, M.; Rowe, W.; Sanders, R.; Scott, J.; Simpson, M.; Smith, T.; Sprague, A.; Stockwell, T.; Turner, R.; Venter, E.; Wang, M.; Wen, M.; Wu, D.; Wu, M.; Xia, A.; Zandieh, A.; Zhu, X., The Sequence of the Human Genome. Science 2001, 291 (5507), 1304.
59. Vigneron, N., Human Tumor Antigens and Cancer Immunotherapy. Biomed Res Int, 2015, 948501-948501.
60. Williams, J. A., Vector Design for Improved DNA Vaccine Efficacy, Safety and Production. Vaccines 2013, 1 (3), 225-249.
61. Wood, L. D.; Parsons, D. W.; Jones, S.; Lin, J.; Sjoblom, T.; Leary, R. J.; Shen, D.; Boca, S. M.; Barber, T.; Ptak, J.; Silliman, N.; Szabo, S.; Dezso, Z.; Ustyanksky, V.; Nikolskaya, T.; Nikolsky, Y.; Karchin, R.; Wilson, P. A.; Kaminker, J. S.; Zhang, Z.; Croshaw, R.; Willis, J.; Dawson, D.; Shipitsin, M.; Willson, J. K.; Sukumar, S.; Polyak, K.; Park, B. H.; Pethiyagoda, C. L.; Pant, P. V.; Ballinger, D. G.; Sparks, A. B.; Hartigan, J.; Smith, D. R.; Suh, E.; Papadopoulos, N.; Buckhaults, P.; Markowitz, S. D.; Parmigiani, G.; Kinzler, K. W.; Velculescu, V. E.; Vogelstein, B., The genomic landscapes of human breast and colorectal cancers. Science 2007, 318 (5853), 1108-13.
62. Yang, B.; Jeang, J.; Yang, A.; Wu, T. C.; Hung, C. F., DNA vaccine for cancer immunotherapy. Hum Vaccin Immunother 2014, 10 (11), 3153-64.
63. Yarchoan, M.; Johnson, B. A., 3rd; Lutz, E. R.; Laheru, D. A.; Jaffee, E. M., Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 2017, 17 (4), 209-222.