研究生: |
張家翔 Chang, Chia-Hsiang |
---|---|
論文名稱: |
應用基因遺傳演算法與廣義迴歸類神經網路於軟體專案開發成本控制之研究 A Study of Software Project Development Cost Control with Genetic Algorithm and General Regress Neural Network |
指導教授: |
蔡長鈞
Tsai, Chang-chun |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 廣義迴歸類神經網路 、類神經網路 、軟體成本預估 、基因遺傳演算法 |
外文關鍵詞: | Software Cost Estimation, Neural Network, General Regression Neural Network, Genetic Algorithms |
相關次數: | 點閱:159 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
資訊系統乃企業組織於資訊時代增加競爭力之利器。故資訊軟體將不斷的被規劃及開發,但軟體開發過程中如果沒有良好的規劃管理,容易發生開發時程延長、品質不佳、人力資源分配不適當等問題,影響軟體後續管理及維護程序,而準確的軟體成本預估是專案預算、時程、人員、設備資源等規劃分配的依據,如果憑藉主觀盲目的制定專案計劃,執行起來和實際情況常會有所出入,導致成本超支、開發時程無法控制,專案失敗機會將會大幅上昇。
傳統上常使用程式碼行數(Lines of Code, LOC)和功能點(Functional Point, FP)的方式來估計軟體成本,已經無法獲得良好的效果。近年來許多學者使用倒傳遞網路(Back Propagation Network, BPN)預估軟體成本都比傳統方法有較佳的準確度,而廣義迴歸類神經網路(General Regression Neural Network, GRNN)較倒傳遞網路相比,更有學習速度快、結果穩定、人為選定的參數少之優點。本研究的目的主要在於使用廣義迴歸類神經網路,並結合基因遺傳演算法(Genetic Algorithms, GA)求解最佳化網路參數,利用複製、交配、突變等基因遺傳運算,找出最適合的平滑參數值,提昇廣義迴歸類神經網路的預測能力,進而建構出一個良好的軟體成本估計模式,輔助軟體開發工作的進行。
經與相關軟體開發成本預估文獻比較中証明,本研究所提出之預測模式的準確度較二元樹演算法(Classification and Regression Trees, CART)、類神經網路(Artificial Neural Network, ANN)、普通最小平方迴歸(Ordinary Least Squares Regression, OLS)、類比式模式(Analogy-Based Model)、調整型類比式模式(Adjusted Analogy-Based Model)為佳。
Information Systems can increase company’s competitive strength in the information age. Therefore, information software will keep planning and developing. However, if the software development process without appropriate management, that will prone to extend development time, low quality, improper human resources assignment. This will affect software management and maintenance procedures. So, accurate software cost estimates is the base of budget, time, human resources, and equipment allocation.
Traditionally, Lines of Code (LOC) and Function Points (FP) are usually applied to estimate software cost. But these two methods have been unable to obtain good results. During recent years, many studies use Back Propagation Network to estimate software cost and all the studies are better than the traditional method of the accuracy of software cost prediction. Compared with the General Regression Neural Network (GRNN) and Back Propagation Network (BPN), GRNN have advantages included learning speed fast, stable results, and less parameters. The purpose of this study is to use Genetic Algorithms (GA) integrated GRNN. This research tries to find the most suitable smoothing parameter values of the GRNN, and enhance the ability of forecasting.
By Comparison with software development costs estimated method in related literature, the accuracy of forecasting model in this research is better than Classification and Regression Trees (CART), Artificial Neural Network (ANN), Ordinary Least Squares Regression (OLS), Analogy-Based Model, and Adjusted Analogy-Based Model.
周鵬程(民91)。遺傳演算法的原理與應用。台北:全華科技圖書股份有限公司。
陳明(民95)。軟體工程-Software Engineering。台北:網奕資訊科技股份有限公司。
葉怡成(民83)。類神經網路模式應用與實作。台北:儒林圖書有限公司。
趙善中、趙薇、尤柄文(民96)。UML架構導向軟體工程。台北:新文京開發出版股份有限公司。
蘇木春、張孝德(民93)。機器學習-類神經網路、模糊系統以及基因演算法則。台北:全華科技圖書股份有限公司。
Aamodt, A., & Plaza, E. (1994). Case-Based Reasoning - Foundational Issues, Methodological Variations, and System Approaches, AI Communications, 7(1), 39-59.
Abran, A., & Robillard, P. N. (1996). Function points analysis: An empirical study of its measurement Processes, IEEE Transactions on Software Engineering, 22(12), 895-910.
Albrecht, A. J., & Gaffney, J. E. (1983). Software Function, Source Lines of Code, and Development Effort Prediction - A Software Science Validation, IEEE Transactions on Software Engineering, 9(6), 639-648.
Azoff, E. M. (1994). Neural network time series forecasting of financial markets Chichester Wiley.
Braga, P. L., Oliveira, A. L. I., & Meira, S. R. L. (2007). Software Effort Estimation Using Machine Learning Techniques with Robust Confidence Intervals. Paper presented at the Tools with Artificial Intelligence, 19th IEEE International Conference on.
Boehm, B. (1983). Software Engineering Economics, Englewood Cliffs, N.J.: Prentice-Hall.
Chiu, N. H., & Huang, S. J. (2007). The adjusted analogy-based software effort estimation based on similarity distances, Journal of Systems and Software, 80(4), 628-640.
Chun Che, F., Iyer, V., Brown, W., & Kok Wai Wong, A. K. W. W. (2005). Comparing the Performance of Different Neural Networks Architectures for the Prediction of Mineral Prospectivity, Paper presented at the Machine Learning and Cybernetics, Proceedings of 2005 International Conference on.
Cigizoglu, H. K., & Alp, M. (2006). Generalized regression neural network in modeling river sediment yield, Advances in Engineering Software, 37(2), 63-68.
Finnie, G. R., Wittig, G. E., & Desharnais, J. M. (1997). A comparison of software effort estimation techniques: Using function points with neural networks, case-based reasoning and regression models, Journal of Systems and Software, 39(3), 281-289.
Foss, T., Stensrud, E., Kitchenham, B., & Myrtveit, I. (2003). A simulation study of the model evaluation criterion MMRE. IEEE Transactions on Software Engineering, 29(11), 985-995.
Heiat, A. (2002). Comparison of artificial neural network and regression models for estimating software development effort, Information and Software Technology, 44(15), 911-922.
Huang, X., Ho, D., Ren, J., & Capretz, L. F. (2007). Improving the COCOMO model using a neuro-fuzzy approach, Applied Soft Computing, 7(1), 29-40.
Jeffery, R., Ruhe, M., & Wieczorek, I. (2000). A comparative study of two software development cost modeling techniques using multi-organizational and company-specific data, Information and Software Technology, 42(14), 1009-1016.
Jeffery, R., Ruhe, M., & Wieczorek, I. (2001). Using public domain metrics to estimate software development effort, Paper presented at the Software Metrics Symposium, Proceedings of 2001 Seventh International Conference.
Jun, E. S., & Lee, J. K. (2001). Quasi-optimal case-selective neural network model for software effort estimation, Expert Systems with Applications, 21(1), 1-14.
Kemerer, C. F. (1987). An Empirical Validation of Software Cost Estimation Models, Communications of the ACM, 30(5), 416-429.
Kim, B., Lee, D. W., & Kwon, K. H. (2004). Prediction of etch micro trenching using a neural network, Journal of Applied Physics, 96(7), 3612-3616.
Lee, A., Cheng, C. H., & Balakrishnan, J. (1998). Software development cost estimation: Integrating neural network with cluster analysis, Information & Management, 34(1), 1-9.
Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shepperd, M., et al. (2000). An investigation of machine learning based prediction systems, Journal of Systems and Software, 53(1), 23-29.
Marquez, L., & Hill, T. (1993). Function approximation using back propagation and general regression neural network, Paper presented at the System Sciences, Proceedings of the Twenty-Sixth Hawaii International Conference on.
Matson, J. E., Barrett, B. E., & Mellichamp, J. M. (1994). Software-Development Cost Estimation Using Function Points, IEEE Transactions on Software Engineering, 20(4), 275-287.
Molokken, K., & Jorgensen, M. (2003). A review of software surveys on software effort estimation, Paper presented at the Empirical Software Engineering, Proceedings of the 2003 International Symposium.
Myrtveit, I., Stensrud, E., & Shepperd, M. (2005). Reliability and validity in comparative studies of software prediction models, IEEE Transactions on Software Engineering, 31(5), 380-391.
Parzen, E. (1962). On Estimation of a Probability Density Function and Mode, The Annals of Mathematical Statistics, 33(3), 1065-1076.
Qinbao, S., Shepperd, M., & Mair, C. (2005). Using grey relational analysis to predict software effort with small data sets, Paper presented at the Software Metrics, Proceedings of the 11th IEEE International Symposium.
Sentas, P., Angelis, L., Stamelos, I., & Bleris, G. (2005). Software productivity and effort prediction with ordinal regression, Information and Software Technology, 47(1), 17-29.
Shepperd, M., & Kadoda, G. (2001). Comparing software prediction techniques using simulation, IEEE Transactions on Software Engineering, 27(11), 1014-1022.
Shukla, K. K. (2000). Neuro-genetic prediction of software development effort, Information and Software Technology, 42(10), 701-713.
Specht, D. F. (1991). A General Regression Neural Network, IEEE Transactions on Neural Networks, 2(6), 568-576.
Strike, K., El Emam, K., & Madhavji, N. (2001). Software cost estimation with incomplete data, IEEE Transactions on Software Engineering, 27(10), 890-908.
The Standish Group. (1995). Chaos report, Standish Group Report.http://net.educause.edu/ir/library/pdf/NCP08083B.pdf, November 2007.
The Standish Group. (2004). Chaos report, Standish Group Report.http://www.infoq.com/news/Standish-Chaos-Report-Questioned. November 2007.
Thwin, M. M. T., & Quah, T. S. (2005). Application of neural networks for software quality prediction using object-oriented metrics, Journal of Systems and Software, 76(2), 147-156.
Tseng, H. Y. (2006). Welding parameters optimization for economic design using neural approximation and genetic algorithm, International Journal of Advanced Manufacturing Technology, 27(9-10), 897-901.