| 研究生: |
林長弘 Lin, Chang-Hung |
|---|---|
| 論文名稱: |
基於空中可重構智慧反射表面的位置不確定性下之被動波束成形設計 Passive beamforming design for aerial reconfigurable intelligent surface with location uncertainty |
| 指導教授: |
張志文
Chang, Wenson |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 空中可重構智慧表面 、波束平坦化技術 、強韌波束成形設計 、半正定規劃 |
| 外文關鍵詞: | Aerial reconfigurable intelligent surface, beam flattening, robust passive beamforming, SDP |
| 相關次數: | 點閱:43 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中針對了空中可重構智慧反射表面的位置不確定性問題作探討,建立了一個由空中可重構智慧反射表面輔助的三維下行傳輸系統。儘管空中可重構智慧反射表面相比於地面可重構智慧反射表面有著全向性反射以及可自由調整其位置的好處,它必須被裝設在氣球或無人機等空中平台上以確保它維持在一定高度的天空中,而這導致了額外的功能消耗,同時它的實際位置也可能因晃動或估測錯誤而導致與系統認知的位置不同。對於搭載著龐大數量之被動式反射元件的可重構智慧反射表面來說,些微的位置變動都會使表現大幅下降,因此需要特別針對因位置不確定性而產生的向為誤差作處理。本篇論文提出了兩種被動波束成形設計方法去降低相位誤差對表現所帶來的影響,其一是使用最佳化方法將問題轉化成凸優化的半正定規劃問題,其二則是波束平坦化技術,目的在於拓寬由空中可重構智慧反射表面建構的波束以提升系統對相位誤差的容忍程度。在晃動程度到一定程度下,這兩種方法所建構的強韌被動波束成形可以提供更好的傳輸品質。
This thesis considers a 3D aerial reconfigurable intelligent surface (ARIS) downlink system with ARIS location uncertainty. Compared with the terrestrial RIS, ARIS can provide panoramic full-angle reflection which requires only one reflection to serve the nodes in the coverage area. Furthermore, the adjustable location and height of ARIS makes the deployment and beamforming design more flexible. However, ARIS must be equipped on the aerial platforms such as balloon or unmanned aerial vehicle (UAV) to maintain its height. This requirement causes more energy consumption and ARIS location uncertainty. For the RIS with numerous passive reflecting elements, the beamforming performance is sensitive to the location variation. Thus, it's necessary to address the effect of the phase error caused by the ARIS location uncertainty. In this thesis, we propose two methods to design a robust passive beamforming of the ARIS which aims to reduce the effect of the phase error. One is the optimization method which transforms the non-convex problem of passive beamforming design into a convex semi-definite (SDP) problem. Another is beam flattening technique, a unique concept that broadens the beamwidth of the beam constructed by the ARIS to increase the tolerance for phase error. With a robust passive beamforming design to deal with the ARIS location uncertainty, the quality of service (QoS) can be improved when the location variation is sufficiently large.
[1] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5394–5409, 2019.
[2] X. Hu, J. Wang, and C. Zhong, “Statistical csi based design for intelligent reflecting surface assisted MISO systems,” Science China Information Sciences, vol. 63, no. 12, pp. 1–10, 2020.
[3] S. Li, B. Duo, X. Yuan, Y.-C. Liang, and M. Di Renzo, “Reconfigurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming,” IEEE Wireless Communications Letters, vol. 9, no. 5, pp. 716–720, 2020.
[4] M. Al-Jarrah, A. Al-Dweik, E. Alsusa, Y. Iraqi, and M.-S. Alouini, “On the performance of IRS-assisted multi-layer UAV communications with imperfect phase compensation,” IEEE Transactions on Communications, vol. 69, no. 12, pp. 8551– 8568, 2021.
[5] T. Shafique, H. Tabassum, and E. Hossain, “Optimization of wireless relaying with flexible UAV-borne reflecting surfaces,” IEEE Transactions on Communications, vol. 69, pp. 309–325, 2021.
[6] T. Zhou, K. Xu, X. Xia, W. Xie, and X. Yang, “Achievable rate maximization for aerial intelligent reflecting surface-aided cell-free massive MIMO system,” in 2020 IEEE 6th International Conference on Computer and Communications (ICCC). IEEE, 2020, pp. 623–628.
[7] T. Zhou, K. Xu, W. Xie, Z. Shen, C. Wei, J. Liu, and L. Sun, “Aerial intelligent reflecting surface-enhanced cell-free massive MIMO for high-mobility communication: joint doppler compensation and power optimization,” EURASIP Journal on Advances in Signal Processing, vol. 2021, no. 1, pp. 1–18, 2021.
[8] T. N. Do, G. Kaddoum, T. L. Nguyen, D. B. Da Costa, and Z. J. Haas, “Aerial reconfigurable intelligent surface-aided wireless communication systems,” in 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2021, pp. 525–530.
[9] H. Long, M. Chen, Z. Yang, B. Wang, Z. Li, X. Yun, and M. Shikh-Bahaei,“Reflections in the sky: Joint trajectory and passive beamforming design for secure UAV networks with reconfigurable intelligent surface,” arXiv preprint arXiv: 2005.10559, 2020.
[10] H. Lu, Y. Zeng, S. Jin, and R. Zhang, “Enabling panoramic full-angle reflection via aerial intelligent reflecting surface,” in 2020 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2020, pp. 1–6.
[11] ——, “Aerial intelligent reflecting surface: Joint placement and passive beamforming design with 3d beam flattening,” IEEE Transactions on Wireless Communications, vol. 20, no. 7, pp. 4128–4143, 2021.
[12] Y. Liu, B. Duo, Q. Wu, X. Yuan, J. Li, and Y. LI, “Elevation angle-dependent trajectory design for aerial RIS-aided communication,” arXiv preprint arXiv: 2108.10180, 2021.
[13] L. Liu, S. Zhang, and R. Zhang, “CoMP in the sky: UAV placement and movement optimization for multi-user communications,” IEEE Transactions on Communications,
vol. 67, no. 8, pp. 5645–5658, 2019.
[14] M.-A. Badiu and J. P. Coon, “Communication through a large reflecting surface with phase errors,” IEEE Wireless Communications Letters, vol. 9, no. 2, pp. 184–188, 2019.
[15] A. Aziz, M. Zeng, J. Zhou, C. N. Georghiades, and S. Cui, “Robust beamforming with channel uncertainty for two-way relay networks,” in 2012 IEEE International Conference on Communications (ICC), 2012, pp. 3632–3636.
[16] J. Zhang, Y. Zhang, C. Zhong, and Z. Zhang, “Robust design for intelligent reflecting surfaces assisted MISO systems,” IEEE Communications Letters, vol. 24, no. 10, pp. 2353–2357, 2020.
[17] X. Hu, C. Zhong, M.-S. Alouini, and Z. Zhang, “Robust design for IRS-aided communication systems with user location uncertainty,” IEEE Wireless Communications Letters, vol. 10, no. 1, pp. 63–67, 2021.
[18] X. Hu, C. Zhong, Y. Zhang, X. Chen, and Z. Zhang, “Location information aided multiple intelligent reflecting surface systems,” IEEE Transactions on Communications, vol. 68, no. 12, pp. 7948–7962, 2020.
[19] Z.-Q. Luo, J. Sturm, and S. Zhang, “Multivariate nonnegative quadratic mappings,” SIAM Journal on Optimization, vol. 14, pp. 1140–1162, 01 2004.
[20] Z. Xiao, T. He, P. Xia, and X.-G. Xia, “Hierarchical codebook design for beamforming training in millimeter-wave communication,” IEEE Transactions on Wireless Communications, vol. 15, no. 5, pp. 3380–3392, 2016.
[21] S. Rajagopal, “Beam broadening for phased antenna arrays using multi-beam subarrays,” in 2012 IEEE International Conference on Communications (ICC), 2012, pp. 3637–3642.