| 研究生: |
范絜婷 Fan, Chieh-Ting |
|---|---|
| 論文名稱: |
酪氨酸激酶接受器在大腸直腸癌的致病機轉 Pathogenesis of tyrosine kinase receptor in colorectal cancer |
| 指導教授: |
蔡少正
Tsai, Shaw-Jenq |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 大腸直腸癌 、酪氨酸激酶接受器 |
| 外文關鍵詞: | CRC, RTK, TYRO3 |
| 相關次數: | 點閱:52 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區大腸直腸癌發生、死亡人數,每年呈快速增加的趨勢,居所有癌症發生率及死亡率的第三大原因。在臨床上治療包括化學治療、放射線療法、標靶治療以及最主要的手術切除,不過對於大腸直腸癌後期轉移性的患者來說,一直到目前為止還尚未發現有效的治療策略。目前認為大腸直腸癌是一種異質性疾病,涉及了多種複雜的發病機制,包括致癌基因的活化,以及未活化的抑癌基因,基因突變及轉變。目前需要更清楚的理解大腸直腸癌的分子機制,回顧大腸直腸癌的病理生理學以及目前已知的分子機制是相當重要的,由於近年來分子生物學進展快速,從正常的上皮細胞-瘜肉-腺瘤-腺癌的生成機制逐漸明朗。目前已知APC (Adenomatous polyposis coli) 基因的突變發生在大腸瘜肉的早期,致癌基因KRAS則是發生在中期腺瘤階段而後期大腸癌的發生則伴隨著TP53基因的突變,其他基因突變也陸續在大腸直腸癌不同階段被發現。在這篇文章中,首先我們介紹幾種常見的大腸直腸癌 (遺傳性以及散發性大腸直腸癌),以及大腸直腸癌常見的分期法,接著會逐步描述典型的大腸直腸癌基因轉變之發病過程,以及已知的大腸直腸癌的基因突變包括,KRAS,P53,APC,錯誤修復基因等許多基因。另外,我們也會整理數種已知的大腸直腸癌涉及的訊息傳遞路徑包括Wnt訊息傳遞路徑、TGF-beta路徑、K-RAS路徑、LKB路徑、Notch以及Hedgehog路徑,最後一部分會討論在許多研究中已發現穿膜受體酪氨酸激酶RTK的過度表現會造成癌症的發生,並且在大腸直腸癌中發現TAM家族的酪氨酸激酶接受器TYRO3過度表現,以及細胞核內TYRO3可能參與調控了致癌基因的表現,不過TYRO3入核調控機制尚不清楚,因此我們認為未來應該靶向TYRO3來進行更進一步的研究以及治療上的策略,提供大腸直腸癌的治療能夠多一個新的治療方向。
We sorted several pathogenesis, signal pathway, mutated oncogene and tumor suppressor gene of colorectal cancer (CRC) which can offer new treatment direction for clinicians.The past studies have found that the overexpression of many transmembrane receptor tyrosine kinase (RTK)s can cause cancer. Due to TAM family receptor tyrosine kinase TYRO3 is positive correlation with severity of CRC. Through animal experiment, TYRO3 antibody combined with anticancer drugs 5-Fluorouracil treatment had good results, but it was not completely inhibited. Therefore, we believe that there should be other mechanisms involved, and subsequent studies found that TYRO3 enters the nucleus and the nucleus TYRO3 is also proportional to the malignancy of CRC. Therefore, we suggest that TYRO3 in the nucleus should be targeted as a research direction in the future.
1. Siegel, R.L., et al., Colorectal cancer statistics, 2020. CA Cancer J Clin, 2020. 70(3): p. 145-164.
2. Kahi, C.J., et al., Colonoscopy Surveillance after Colorectal Cancer Resection: Recommendations of the US Multi-Society Task Force on Colorectal Cancer. Am J Gastroenterol, 2016. 111(3): p. 337-46; quiz 347.
3. Half, E., D. Bercovich, and P. Rozen, Familial adenomatous polyposis. Orphanet J Rare Dis, 2009. 4: p. 22.
4. Green, S.E., et al., Hereditary non-polyposis colorectal cancer. Int J Colorectal Dis, 1998. 13(1): p. 3-12.
5. Allen, B.A. and J.P. Terdiman, Hereditary polyposis syndromes and hereditary non-polyposis colorectal cancer. Best Pract Res Clin Gastroenterol, 2003. 17(2): p. 237-58.
6. Syngal, S., et al., ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. The American journal of gastroenterology, 2015. 110(2): p. 223-263.
7. Lengauer, C., K.W. Kinzler, and B. Vogelstein, Genetic instabilities in human cancers. Nature, 1998. 396(6712): p. 643-9.
8. Simons, C.C., et al., A novel classification of colorectal tumors based on microsatellite instability, the CpG island methylator phenotype and chromosomal instability: implications for prognosis. Ann Oncol, 2013. 24(8): p. 2048-56.
9. Thiagalingam, S., et al., Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proc Natl Acad Sci U S A, 2001. 98(5): p. 2698-702.
10. Sakthianandeswaren, A., et al., MACROD2 Haploinsufficiency Impairs Catalytic Activity of PARP1 and Promotes Chromosome Instability and Growth of Intestinal Tumors. Cancer Discov, 2018. 8(8): p. 988-1005.
11. Wang, Z., et al., Three classes of genes mutated in colorectal cancers with chromosomal instability. Cancer Res, 2004. 64(9): p. 2998-3001.
12. Shin, H.J., et al., Dual roles of human BubR1, a mitotic checkpoint kinase, in the monitoring of chromosomal instability. Cancer Cell, 2003. 4(6): p. 483-97.
13. Ryan, S.D., et al., Up-regulation of the mitotic checkpoint component Mad1 causes chromosomal instability and resistance to microtubule poisons. Proc Natl Acad Sci U S A, 2012. 109(33): p. E2205-14.
14. Ran, Z., et al., Clinicopathological and prognostic implications of polo-like kinase 1 expression in colorectal cancer: A systematic review and meta-analysis. Gene, 2019. 721: p. 144097.
15. Bischoff, J.R., et al., A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. Embo j, 1998. 17(11): p. 3052-65.
16. Bavetsias, V. and S. Linardopoulos, Aurora Kinase Inhibitors: Current Status and Outlook. Front Oncol, 2015. 5: p. 278.
17. Przybylowska, K., et al., An association selected polymorphisms of XRCC1, OGG1 and MUTYH gene and the level of efficiency oxidative DNA damage repair with a risk of colorectal cancer. Mutat Res, 2013. 745-746: p. 6-15.
18. Plentz, R.R., et al., Telomere shortening of epithelial cells characterises the adenoma-carcinoma transition of human colorectal cancer. Gut, 2003. 52(9): p. 1304-7.
19. Comprehensive molecular characterization of human colon and rectal cancer. Nature, 2012. 487(7407): p. 330-7.
20. Lengauer, C., K.W. Kinzler, and B. Vogelstein, Genetic instability in colorectal cancers. Nature, 1997. 386(6625): p. 623-7.
21. Fearon, E.R. and B. Vogelstein, A genetic model for colorectal tumorigenesis. Cell, 1990. 61(5): p. 759-67.
22. Modrich, P. and R. Lahue, Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem, 1996. 65: p. 101-33.
23. Fishel, R., et al., The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell, 1993. 75(5): p. 1027-38.
24. Leach, F.S., et al., Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell, 1993. 75(6): p. 1215-25.
25. Bronner, C.E., et al., Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature, 1994. 368(6468): p. 258-61.
26. Li, G.M., Mechanisms and functions of DNA mismatch repair. Cell Res, 2008. 18(1): p. 85-98.
27. Toyota, M., et al., CpG island methylator phenotype in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(15): p. 8681-8686.
28. Ligtenberg, M.J., et al., Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3' exons of TACSTD1. Nat Genet, 2009. 41(1): p. 112-7.
29. Hansen, I.O. and P. Jess, Possible better long-term survival in left versus right-sided colon cancer - a systematic review. Dan Med J, 2012. 59(6): p. A4444.
30. Augustus, G.J. and N.A. Ellis, Colorectal Cancer Disparity in African Americans: Risk Factors and Carcinogenic Mechanisms. Am J Pathol, 2018. 188(2): p. 291-303.
31. Toyota, M., et al., CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A, 1999. 96(15): p. 8681-6.
32. Deschoolmeester, V., et al., A review of the most promising biomarkers in colorectal cancer: one step closer to targeted therapy. Oncologist, 2010. 15(7): p. 699-731.
33. Suzuki, K., et al., Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell, 2006. 9(3): p. 199-207.
34. Friedman, J.M., et al., Localized control of ligand binding in hemoglobin: effect of tertiary structure on picosecond geminate recombination. Science, 1985. 229(4709): p. 187-90.
35. Polakis, P., The adenomatous polyposis coli (APC) tumor suppressor. Biochim Biophys Acta, 1997. 1332(3): p. F127-47.
36. Goss, K.H. and J. Groden, Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol, 2000. 18(9): p. 1967-79.
37. Morin, P.J., et al., Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 1997. 275(5307): p. 1787-90.
38. Ilyas, M. and I.P. Tomlinson, The interactions of APC, E-cadherin and beta-catenin in tumour development and progression. J Pathol, 1997. 182(2): p. 128-37.
39. Malumbres, M. and M. Barbacid, RAS oncogenes: the first 30 years. Nat Rev Cancer, 2003. 3(6): p. 459-65.
40. Jancík, S., et al., Clinical relevance of KRAS in human cancers. J Biomed Biotechnol, 2010. 2010: p. 150960.
41. Cho, K.R., et al., The DCC gene: structural analysis and mutations in colorectal carcinomas. Genomics, 1994. 19(3): p. 525-31.
42. Hedrick, L., et al., The DCC gene product in cellular differentiation and colorectal tumorigenesis. Genes Dev, 1994. 8(10): p. 1174-83.
43. Keino-Masu, K., et al., Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell, 1996. 87(2): p. 175-85.
44. Kress, M., et al., Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol, 1979. 31(2): p. 472-83.
45. Engeland, K., Cell cycle regulation: p53-p21-RB signaling. Cell Death & Differentiation, 2022. 29(5): p. 946-960.
46. Wang, X., E.R. Simpson, and K.A. Brown, p53: Protection against Tumor Growth beyond Effects on Cell Cycle and Apoptosis. Cancer Res, 2015. 75(23): p. 5001-7.
47. Olivier, M., M. Hollstein, and P. Hainaut, TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol, 2010. 2(1): p. a001008.
48. Farin, H.F., et al., Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature, 2016. 530(7590): p. 340-3.
49. Kuhnert, F., et al., Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci U S A, 2004. 101(1): p. 266-71.
50. Kim, K.A., et al., Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science, 2005. 309(5738): p. 1256-9.
51. Fodde, R., The APC gene in colorectal cancer. Eur J Cancer, 2002. 38(7): p. 867-71.
52. Suraweera, N., et al., Mutations within Wnt pathway genes in sporadic colorectal cancers and cell lines. Int J Cancer, 2006. 119(8): p. 1837-42.
53. Kitaeva, M.N., et al., Mutations in beta-catenin are uncommon in colorectal cancer occurring in occasional replication error-positive tumors. Cancer Res, 1997. 57(20): p. 4478-81.
54. Massagué, J., TGF-beta signal transduction. Annu Rev Biochem, 1998. 67: p. 753-91.
55. Xu, Y. and B. Pasche, TGF-β signaling alterations and susceptibility to colorectal cancer. Human Molecular Genetics, 2007. 16(R1): p. R14-R20.
56. Fynan, T.M. and M. Reiss, Resistance to inhibition of cell growth by transforming growth factor-beta and its role in oncogenesis. Crit Rev Oncog, 1993. 4(5): p. 493-540.
57. Pasche, B., et al., TbetaR-I(6A) is a candidate tumor susceptibility allele. Cancer Res, 1999. 59(22): p. 5678-82.
58. Xu, Y. and B. Pasche, TGF-beta signaling alterations and susceptibility to colorectal cancer. Hum Mol Genet, 2007. 16 Spec No 1(Spec): p. R14-20.
59. Xie, W., et al., Loss of Smad signaling in human colorectal cancer is associated with advanced disease and poor prognosis. Cancer J, 2003. 9(4): p. 302-12.
60. Stacey, D.W., Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol, 2003. 15(2): p. 158-63.
61. Kranenburg, O., M.F. Gebbink, and E.E. Voest, Stimulation of angiogenesis by Ras proteins. Biochim Biophys Acta, 2004. 1654(1): p. 23-37.
62. Mitin, N., K.L. Rossman, and C.J. Der, Signaling interplay in Ras superfamily function. Curr Biol, 2005. 15(14): p. R563-74.
63. Fearon, E.R., Molecular genetics of colorectal cancer. Annu Rev Pathol, 2011. 6: p. 479-507.
64. Heinemann, V., et al., Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat Rev, 2009. 35(3): p. 262-71.
65. Tiainen, M., A. Ylikorkala, and T.P. Mäkelä, Growth suppression by Lkb1 is mediated by a G(1) cell cycle arrest. Proc Natl Acad Sci U S A, 1999. 96(16): p. 9248-51.
66. Wharton, K.A., et al., Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell, 1985. 43(3 Pt 2): p. 567-81.
67. Artavanis-Tsakonas, S., K. Matsuno, and M.E. Fortini, Notch signaling. Science, 1995. 268(5208): p. 225-32.
68. Nicolas, M., et al., Notch1 functions as a tumor suppressor in mouse skin. Nat Genet, 2003. 33(3): p. 416-21.
69. van Es, J.H., et al., Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature, 2005. 435(7044): p. 959-63.
70. Schröder, N. and A. Gossler, Expression of Notch pathway components in fetal and adult mouse small intestine. Gene Expr Patterns, 2002. 2(3-4): p. 247-50.
71. Reynolds, T.C., S.D. Smith, and J. Sklar, Analysis of DNA surrounding the breakpoints of chromosomal translocations involving the beta T cell receptor gene in human lymphoblastic neoplasms. Cell, 1987. 50(1): p. 107-17.
72. Chandrasekaran, B., et al., The chemopreventive effect of withaferin A on spontaneous and inflammation-associated colon carcinogenesis models. Carcinogenesis, 2018. 39(12): p. 1537-1547.
73. Li, T., et al., SMO expression in colorectal cancer: associations with clinical, pathological, and molecular features. Ann Surg Oncol, 2014. 21(13): p. 4164-73.
74. Ingham, P.W. and A.P. McMahon, Hedgehog signaling in animal development: paradigms and principles. Genes Dev, 2001. 15(23): p. 3059-87.
75. Konstantinou, D., N. Bertaux-Skeirik, and Y. Zavros, Hedgehog signaling in the stomach. Curr Opin Pharmacol, 2016. 31: p. 76-82.
76. Skoda, A.M., et al., The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci, 2018. 18(1): p. 8-20.
77. van den Brink, G.R., et al., Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet, 2004. 36(3): p. 277-82.
78. Shi, T., et al., cDNA microarray gene expression profiling of hedgehog signaling pathway inhibition in human colon cancer cells. PLoS One, 2010. 5(10).
79. Taniguchi, H., et al., Transcriptional silencing of hedgehog-interacting protein by CpG hypermethylation and chromatic structure in human gastrointestinal cancer. J Pathol, 2007. 213(2): p. 131-9.
80. Robinson, D.R., Y.M. Wu, and S.F. Lin, The protein tyrosine kinase family of the human genome. Oncogene, 2000. 19(49): p. 5548-57.
81. Hubbard, S.R., Structural analysis of receptor tyrosine kinases. Prog Biophys Mol Biol, 1999. 71(3-4): p. 343-58.
82. Pawson, T., G.D. Gish, and P. Nash, SH2 domains, interaction modules and cellular wiring. Trends Cell Biol, 2001. 11(12): p. 504-11.
83. Lemmon, M.A. and J. Schlessinger, Cell signaling by receptor tyrosine kinases. Cell, 2010. 141(7): p. 1117-34.
84. McDonell, L.M., et al., Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin. Hum Mol Genet, 2015. 24(R1): p. R60-6.
85. Lahiry, P., et al., Kinase mutations in human disease: interpreting genotype-phenotype relationships. Nat Rev Genet, 2010. 11(1): p. 60-74.
86. Medves, S. and J.B. Demoulin, Tyrosine kinase gene fusions in cancer: translating mechanisms into targeted therapies. J Cell Mol Med, 2012. 16(2): p. 237-48.
87. Sharma, S.V., et al., Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer, 2007. 7(3): p. 169-81.
88. Marchetti, A., et al., EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol, 2005. 23(4): p. 857-65.
89. Red Brewer, M., et al., Mechanism for activation of mutated epidermal growth factor receptors in lung cancer. Proc Natl Acad Sci U S A, 2013. 110(38): p. E3595-604.
90. Tallini, G. and S.L. Asa, RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol, 2001. 8(6): p. 345-54.
91. Heinrich, M.C., et al., Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol, 2003. 21(23): p. 4342-9.
92. Arjona, D., et al., Molecular analysis of the EGFR gene in astrocytic gliomas: mRNA expression, quantitative-PCR analysis of non-homogeneous gene amplification and DNA sequence alterations. Neuropathol Appl Neurobiol, 2005. 31(4): p. 384-94.
93. Lee, J.C., et al., Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Med, 2006. 3(12): p. e485.
94. Rosell, R., et al., Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol, 2012. 13(3): p. 239-46.
95. Mok, T.S., et al., Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med, 2009. 361(10): p. 947-57.
96. Soria, J.C., et al., Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med, 2018. 378(2): p. 113-125.
97. Ludes-Meyers, J.H., et al., Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol Cell Biol, 1996. 16(11): p. 6009-19.
98. Reznik, T.E., et al., Transcription-dependent epidermal growth factor receptor activation by hepatocyte growth factor. Mol Cancer Res, 2008. 6(1): p. 139-50.
99. Hanawa, M., et al., EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. Int J Cancer, 2006. 118(5): p. 1173-80.
100. Albertson, D.G., Gene amplification in cancer. Trends Genet, 2006. 22(8): p. 447-55.
101. Dutt, A., et al., Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS One, 2011. 6(6): p. e20351.
102. Reis-Filho, J.S., et al., FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res, 2006. 12(22): p. 6652-62.
103. Fischbach, A., et al., Fibroblast growth factor receptor (FGFR) gene amplifications are rare events in bladder cancer. Histopathology, 2015. 66(5): p. 639-49.
104. Helsten, T., et al., The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. Clin Cancer Res, 2016. 22(1): p. 259-67.
105. Tabone, S., et al., KIT overexpression and amplification in gastrointestinal stromal tumors (GISTs). Biochim Biophys Acta, 2005. 1741(1-2): p. 165-72.
106. Carvajal, R.D., et al., KIT as a therapeutic target in metastatic melanoma. Jama, 2011. 305(22): p. 2327-34.
107. Shi, J., et al., Frequent gene amplification predicts poor prognosis in gastric cancer. Int J Mol Sci, 2012. 13(4): p. 4714-26.
108. Kim, J.Y., et al., Prognostic value of ERBB4 expression in patients with triple negative breast cancer. BMC Cancer, 2016. 16: p. 138.
109. Moreira, R.B., R.D. Peixoto, and M.R. de Sousa Cruz, Clinical Response to Sorafenib in a Patient with Metastatic Colorectal Cancer and FLT3 Amplification. Case Rep Oncol, 2015. 8(1): p. 83-7.
110. Stransky, N., et al., The landscape of kinase fusions in cancer. Nat Commun, 2014. 5: p. 4846.
111. Nowell, P.C., Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest, 2007. 117(8): p. 2033-5.
112. Faderl, S., et al., The biology of chronic myeloid leukemia. N Engl J Med, 1999. 341(3): p. 164-72.
113. Sawyers, C.L., Chronic myeloid leukemia. N Engl J Med, 1999. 340(17): p. 1330-40.
114. Morris, S.W., et al., Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science, 1994. 263(5151): p. 1281-4.
115. Soda, M., et al., Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature, 2007. 448(7153): p. 561-566.
116. Kentsis, A., et al., Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia. Nat Med, 2012. 18(7): p. 1118-22.
117. Ciardiello, F. and G. Tortora, A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res, 2001. 7(10): p. 2958-70.
118. Krystal, G.W., S.J. Hines, and C.P. Organ, Autocrine growth of small cell lung cancer mediated by coexpression of c-kit and stem cell factor. Cancer Res, 1996. 56(2): p. 370-6.
119. Esposito, I., et al., The stem cell factor-c-kit system and mast cells in human pancreatic cancer. Lab Invest, 2002. 82(11): p. 1481-92.
120. Lai, C. and G. Lemke, An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron, 1991. 6(5): p. 691-704.
121. Mark, M.R., et al., rse, a novel receptor-type tyrosine kinase with homology to Axl/Ufo, is expressed at high levels in the brain. J Biol Chem, 1994. 269(14): p. 10720-8.
122. Biscardi, J.S., et al., Rek, a gene expressed in retina and brain, encodes a receptor tyrosine kinase of the Axl/Tyro3 family. J Biol Chem, 1996. 271(46): p. 29049-59.
123. Hsu, P.L., J. Jou, and S.J. Tsai, TYRO3: A potential therapeutic target in cancer. Exp Biol Med (Maywood), 2019. 244(2): p. 83-99.
124. Shin, S.A., et al., Apoptotic cell clearance in the tumor microenvironment: a potential cancer therapeutic target. Arch Pharm Res, 2019. 42(8): p. 658-671.
125. Nomura, K., et al., Activated Microglia Desialylate and Phagocytose Cells via Neuraminidase, Galectin-3, and Mer Tyrosine Kinase. J Immunol, 2017. 198(12): p. 4792-4801.
126. Caberoy, N.B., et al., Galectin-3 is a new MerTK-specific eat-me signal. J Cell Physiol, 2012. 227(2): p. 401-7.
127. Smart, S.K., et al., The Emerging Role of TYRO3 as a Therapeutic Target in Cancer. Cancers (Basel), 2018. 10(12).
128. Toshima, J., et al., Autophosphorylation activity and association with Src family kinase of Sky receptor tyrosine kinase. Biochem Biophys Res Commun, 1995. 209(2): p. 656-63.
129. Ekyalongo, R.C., et al., TYRO3 as a potential therapeutic target in breast cancer. Anticancer Res, 2014. 34(7): p. 3337-45.
130. Qin, A. and W. Qian, MicroRNA-7 inhibits colorectal cancer cell proliferation, migration and invasion via TYRO3 and phosphoinositide 3-kinase/protein B kinase/mammalian target of rapamycin pathway suppression. Int J Mol Med, 2018. 42(5): p. 2503-2514.
131. Kabir, T.D., et al., A microRNA-7/growth arrest specific 6/TYRO3 axis regulates the growth and invasiveness of sorafenib-resistant cells in human hepatocellular carcinoma. Hepatology, 2018. 67(1): p. 216-231.
132. Demarest, S.J., et al., Evaluation of Tyro3 expression, Gas6-mediated Akt phospho
rylation, and the impact of anti-Tyro3 antibodies in melanoma cell lines. Biochemistry, 2013. 52(18): p. 3102-18.
133. Lee, C., Overexpression of Tyro3 receptor tyrosine kinase leads to the acquisition of taxol resistance in ovarian cancer cells. Mol Med Rep, 2015. 12(1): p. 1485-92.
134. Linger, R.M., et al., Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors. Expert Opin Ther Targets, 2010. 14(10): p. 1073-90.
135. Brown, J.E., et al., Cross-phosphorylation, signaling and proliferative functions of the Tyro3 and Axl receptors in Rat2 cells. PLoS One, 2012. 7(5): p. e36800.
136. Akkermann, R., et al., The TAM receptor Tyro3 regulates myelination in the central nervous system. Glia, 2017. 65(4): p. 581-591.
137. Graham, D.K., et al., The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer, 2014. 14(12): p. 769-85.
138. Zhu, S., et al., A genomic screen identifies TYRO3 as a MITF regulator in melanoma. Proc Natl Acad Sci U S A, 2009. 106(40): p. 17025-30.
139. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8.
140. Park, M., et al., Circulating Small Extracellular Vesicles Activate TYRO3 to Drive Cancer Metastasis and Chemoresistance. Cancer Res, 2021. 81(13): p. 3539-3553.
141. Lu, T., et al., Hijacking TYRO3 from Tumor Cells via Trogocytosis Enhances NK-cell Effector Functions and Proliferation. Cancer Immunol Res, 2021. 9(10): p. 1229-1241.
142. Jiang, Z., et al., TYRO3 induces anti-PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis. J Clin Invest, 2021. 131(8).
143. Carpenter, G. and H.J. Liao, Receptor tyrosine kinases in the nucleus. Cold Spring Harb Perspect Biol, 2013. 5(10): p. a008979.
144. Chen, M.K. and M.C. Hung, Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. FEBS J, 2015. 282(19): p. 3693-721.
145. Migdall-Wilson, J., et al., Prolonged exposure to a Mer ligand in leukemia: Gas6 favors expression of a partial Mer glycoform and reveals a novel role for Mer in the nucleus. PLoS One, 2012. 7(2): p. e31635.
146. Tsai, S.-J., et al., Abstract 2488: Functional characterization of nuclear TYRO3 in colorectal cancer. Cancer Research, 2018. 78: p. 2488-2488.
147. Lai, C., M. Gore, and G. Lemke, Structure, expression, and activity of Tyro 3, a neural adhesion-related receptor tyrosine kinase. Oncogene, 1994. 9(9): p. 2567-78.
148. Dufour, F., et al., TYRO3 as a molecular target for growth inhibition and apoptosis induction in bladder cancer. Br J Cancer, 2019. 120(5): p. 555-564.
149. el Sayadi, H., et al., Autocrine role for Gas6 with Tyro3 and Axl in leiomyosarcomas. Target Oncol, 2013. 8(4): p. 261-9.
150. Avilla, E., et al., Activation of TYRO3/AXL tyrosine kinase receptors in thyroid cancer. Cancer Res, 2011. 71(5): p. 1792-804.
151. Duan, Y., et al., Overexpression of Tyro3 and its implications on hepatocellular carcinoma progression. Int J Oncol, 2016. 48(1): p. 358-66.
152. Jansen, F.H., et al., Profiling of antibody production against xenograft-released proteins by protein microarrays discovers prostate cancer markers. J Proteome Res, 2012. 11(2): p. 728-35.
153. Chien, C.W., et al., Targeting TYRO3 inhibits epithelial-mesenchymal transition and increases drug sensitivity in colon cancer. Oncogene, 2016. 35(45): p. 5872-5881.
154. Ammoun, S., et al., Axl/Gas6/NFκB signalling in schwannoma pathological proliferation, adhesion and survival. Oncogene, 2014. 33(3): p. 336-46.
155. Vodenkova, S., et al., 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol Ther, 2020. 206: p. 107447.
156. Folkman, J., Role of angiogenesis in tumor growth and metastasis. Semin Oncol, 2002. 29(6 Suppl 16): p. 15-8.
157. Zhong, H., et al., Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res, 2000. 60(6): p. 1541-5.
158. Hurwitz, H., et al., Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med, 2004. 350(23): p. 2335-42.
159. Van Cutsem, E., et al., Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol, 2012. 30(28): p. 3499-506.
160. Tang, P.A., et al., Phase II clinical and pharmacokinetic study of aflibercept in patients with previously treated metastatic colorectal cancer. Clin Cancer Res, 2012. 18(21): p. 6023-31.
161. Tabernero, J., et al., Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol, 2015. 16(5): p. 499-508.
162. Carter, N.J., Regorafenib: a review of its use in previously treated patients with progressive metastatic colorectal cancer. Drugs Aging, 2014. 31(1): p. 67-78.
163. Seshacharyulu, P., et al., Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets, 2012. 16(1): p. 15-31.
164. Yarom, N. and D.J. Jonker, The role of the epidermal growth factor receptor in the mechanism and treatment of colorectal cancer. Discov Med, 2011. 11(57): p. 95-105.
165. Li, B., H.L. Chan, and P. Chen, Immune Checkpoint Inhibitors: Basics and Challenges. Curr Med Chem, 2019. 26(17): p. 3009-3025.
166. Ganesh, K., et al., Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol, 2019. 16(6): p. 361-375.
167. Kim, N.Y., H.Y. Lee, and C. Lee, Metformin targets Axl and Tyro3 receptor tyrosine kinases to inhibit cell proliferation and overcome chemoresistance in ovarian cancer cells. Int J Oncol, 2015. 47(1): p. 353-60.
168. Honjo, S., et al., Metformin sensitizes chemotherapy by targeting cancer stem cells and the mTOR pathway in esophageal cancer. Int J Oncol, 2014. 45(2): p. 567-74.
169. Gwinn, D.M., et al., AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell, 2008. 30(2): p. 214-26.
170. Buzzai, M., et al., Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res, 2007. 67(14): p. 6745-52.
171. Paolino, M., et al., The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature, 2014. 507(7493): p. 508-12.
172. Suárez, R.M., et al., Inhibitors of the TAM subfamily of tyrosine kinases: synthesis and biological evaluation. Eur J Med Chem, 2013. 61: p. 2-25.
173. Schroeder, G.M., et al., Discovery of N-(4-(2-amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a selective and orally efficacious inhibitor of the Met kinase superfamily. J Med Chem, 2009. 52(5): p. 1251-4.
174. Dai, Y. and D.W. Siemann, BMS-777607, a small-molecule met kinase inhibitor, suppresses hepatocyte growth factor-stimulated prostate cancer metastatic phenotype in vitro. Mol Cancer Ther, 2010. 9(6): p. 1554-61.
175. Yan, S.B., et al., LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models. Invest New Drugs, 2013. 31(4): p. 833-44.
176. Franovic, A., et al., RXDX-106 Is an orally-available, potent and selective TAM/MET inhibitor demonstrating preclinical efficacy in MET-dependent human malignancies. European Journal of Cancer, 2016. 1(69): p. S28-S29.
177. Liu, L., et al., Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res, 2009. 69(17): p. 6871-8.
178. Patwardhan, P.P., et al., Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma. Oncotarget, 2016. 7(4): p. 4093-109.
179. Remsing Rix, L.L., et al., Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia, 2009. 23(3): p. 477-85.
180. Davis, M.I., et al., Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol, 2011. 29(11): p. 1046-51.
181. Yamazaki, H., et al., Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erbB) in human brain tumors. Mol Cell Biol, 1988. 8(4): p. 1816-20.
182. Ferrara, N., VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer, 2002. 2(10): p. 795-803.