簡易檢索 / 詳目顯示

研究生: 劉冠廷
Liu, Guan-Ting
論文名稱: 奈米纖維素萃取與複合強化聚甲基丙烯酸甲酯(PMMA)的應用
Cellulose Nanocrystals (CNCs) Extraction and Applications of CNCs Reinforced Polymethyl Methacrylate (PMMA)
指導教授: 施士塵
Shi, Shih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 94
中文關鍵詞: Cellulose Nanocrystals (CNCs)漂白製程PMMA奈米複合材料
外文關鍵詞: Cellulose Nanocrystals (CNCs), Bleaching Process, PMMA, Nanocomposites
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Cellulose Nanocrystals (CNCs)是近年來受各國矚目的一種奈米材料,具有許多優異性質。農業廢棄物先經過前處理萃取纖維素材料,再透過酸液水解法萃取CNCs。本實驗採用二段製程萃取纖維素材料,第一步利用過氫氧化鈉大量去除木質素,而第二部採用綠色無汙染的過氧化氫作為漂白劑。本研究致力於改善過氧化氫漂白效率較差的問題,利用365 nm的UV光源輔助過氧化氫進行漂白漿料,成功大幅縮短反應時間,僅花費2.5個小時即可萃取出純度很高的纖維素。同時提出UV輔助後,增加反應效率的機制。首先殘留漿料上的非酚性木質素被氫氧自由基分解後,於反應液中形成具有抗氧化能力的酚性木質素,這些化學物質在含有過氧化物的溶液中受365 nm的UV光源作用後,部分轉變成不具抗氧化能力的化學物質,使得在高溫時過氧化氫產生的氫氧自由基,能夠產生穩定的與木質素產生鏈鎖反應,因而提高漂白的效率。取得纖維素材料後,採用硫酸法萃取CNCs。本研究透過CNCs懸浮液在稀釋後因高離子強度的影響,使得CNCs在懸浮液中發生逐漸凝絮的行為,本研究藉由此現象的變化來判別是否成功製造出CNCs以及定性分析CNCs的產量。實驗結果顯示當硫酸濃度60 wt%時,維持25 ℃溫度下反應30 min,產量最大。經由TEME觀察後,從稻稈萃取的CNCs直徑在10~15 nm,長度則大約在100nm左右。再透過XRD的分析數據計算出CNCs的結晶度為83.8%,且經過TGA測試後,得熱降解溫度為257 ℃。
    此外,本研究同步進行CNCs與聚合物的複合研究,利用原位聚合法(In-suit Polymerization)將CelluForce公司製造的CNCs與PMMA複合。經由ASTM-D638標準的拉伸測試結果顯示,當CNCs添加量為0.1 wt%時,不僅在斷裂前發生明顯的頸縮行為,而且材料韌性比純PMMA提升190%。經由UV-Vis的測試分析後,確定奈米複合材料的透光度維持在90%左右。為了近一步了解韌性提升,利用FE-SEM對奈米複合材料的斷面結構進行顯微觀察, 發現CNCs在基材形成奈米等級的小團均勻分散,促使在基材中形成大量界面區。再加上DSC的測試,顯示添加適量的CNCs於PMMA中時會降低PMMA的玻璃轉換溫度,此數據表示界面區分子鏈受奈米小團簇影響後,有效減低局部的拘束狀態。

    In recent years, Cellulose Nanocrystals (CNCs) have garnered a tremendous level of attention not only because of their excellent chemical and physical properties but also due to their renewability and sustainability. This material could be extract from the agricultural by-product such as rice straw, banana tree or bagasse, etc. In our research, We choose the rice straw to be our raw material, so first it must be removed a large amount of lignin by alkaline process to get slurry. Then, the remaining lignin on the slurry were removed by bleaching process. In our research, we utilize 365 nm UV LED to assist the oxidation reaction of the hydrogen peroxide solution. The result indicates that the reaction only took 2.5 hours to obtain high-purity cellulose. We successfully improve the rate of the reaction. Finally, in order to obtain cellulose nanocrystals, the extracted cellulose must be subjected to sulfuric acid hydrolysis. The TEM images show that CNCs from rice straw are about 100 nm in length and 10-15 nm in width. Moreover, the crystalline index and degradation temperature of CNCs are 83.8% and 257 ℃, respectively.

    In addition, the CNCs are compounded into polymethylmethacrylate (PMMA) to obtain nanocomposites by the in-situ polymerization method. The result of tensile test show that the toughness of nanocomposite with 0.1 wt% CNCs is about 2 times higher than pure PMMA. And, the transmittance of nanocomposite with 0.1 wt% CNCs is similar to pure PMMA.

    總目錄 口試合格證明 I 摘要 II Extended abstract IV 誌謝 XIII 總目錄 XV 表目錄 XVIII 圖目錄 XIX 第 1 章 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 研究目標與歷程 4 第 2 章 第二章 文獻回顧 5 2-1 木質纖維素材料 (lignocellulose material) 5 2-1-1 木質素 6 2-1-2 半纖維素 7 2-1-3 纖維素 8 2-2 奈米纖維素材料(CNCs)萃取製程 12 2-2-1 鹼法製漿與漂白製程 12 2-2-2 酸液水解 18 2-2-3 粉末製造 20 2-3 聚合物/奈米複合材料 22 第 3 章 第三章 實驗內容 27 3-1 實驗目的 27 3-2 實驗簡介 28 3-3 實驗流程 29 3-4 實驗方法 30 3-4-1 萃取纖維素製程 30 3-4-2 木質素定性測試 34 3-4-3 奈米纖維素微晶(CNCs)製備 36 3-4-4 奈米纖維素定性分析 38 3-4-5 奈米複合材料製備方式 41 3-4-6 化學成分分析 43 3-4-7 機械性質分析 45 3-4-8 熱性質分析 46 3-4-9 透光度分析 48 3-4-10 UHR-FESEM奈米纖維素複合材料斷面結構分析 49 3-5 實驗設備 50 第 4 章 第四章 實驗結果與討論 52 4-1 萃取纖維素材料製程效率提升測試 52 4-1-1 鹼法製漿(AP)卡巴質測試結果 52 4-1-2 漂白製程(BP)卡巴質測試結果 53 4-1-3 UV輔助漂白效率提升之機制 56 4-1-4 漿料顏色變化 58 4-1-5 漿料組織結構變化 59 4-2 奈米化纖維素(CNCs)分析 60 4-2-1 CNCs產量之定性分析 61 4-2-2 幾何形貌觀測 63 4-2-3 晶體結構變化 64 4-2-4 表面化學性質變化分析 65 4-2-5 元素分析及熱性質分析 68 4-3 CNCs/PMMA奈米複合材料分析 70 4-3-1 機械性質分析 70 4-3-2 透光度分析 75 4-3-3 斷面結構分析 77 4-3-4 介面性質分析 83 4-3-5 PMMA添加CNCs後提升韌性之機制 87 第 5 章 第五章 總結 89 5-1 結論 89 5-2 未來方向展望 90 參考文獻 91

    [1]D. Trache, M. H. Hussin, M. M. Haafiz, and V. K. Thakur, "Recent progress in cellulose nanocrystals: sources and production," Nanoscale, vol. 9, no. 5, pp. 1763-1786, 2017.
    [2]D. N. S. Hon and S. T. Chang, "Surface degradation of wood by ultraviolet light," Journal of Polymer Science: Polymer Chemistry Edition, vol. 22, no. 9, pp. 2227-2241, 1984.
    [3]T. Dizhbite, G. Telysheva, V. Jurkjane, and U. Viesturs, "Characterization of the radical scavenging activity of lignins––natural antioxidants," Bioresource Technology, vol. 95, no. 3, pp. 309-317, 2004.
    [4]M. Mariano, N. El Kissi, and A. Dufresne, "Cellulose nanocrystals and related nanocomposites: review of some properties and challenges," Journal of Polymer Science Part B: Polymer Physics, vol. 52, no. 12, pp. 791-806, 2014.
    [5]S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, "Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance," Biotechnology for biofuels, vol. 3, no. 1, p. 10, 2010.
    [6]V. I. Kovalenko, "Crystalline cellulose: structure and hydrogen bonds," Russian Chemical Reviews, vol. 79, no. 3, p. 231, 2010.
    [7]S. Iwamoto, W. Kai, A. Isogai, and T. Iwata, "Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy," Biomacromolecules, vol. 10, no. 9, pp. 2571-2576, 2009.
    [8]P. Pędziwiatr, "Decomposition of hydrogen peroxide-kinetics and review of chosen catalysts," Acta Innovations, no. 26, pp. 45-52, 2018.
    [9]R. C. Sun, J. Fang, and J. Tomkinson, "Delignification of rye straw using hydrogen peroxide," Industrial crops and products, vol. 12, no. 2, pp. 71-83, 2000.
    [10]S. Muhammad and T. N. Rao, "211. Spectrophotometric determination of the dissociation constant of hydrogen peroxide," Journal of the Chemical Society (Resumed), pp. 1077-1078, 1957.
    [11]J. M. Gould, "Studies on the mechanism of alkaline peroxide delignification of agricultural residues," Biotechnology and Bioengineering, vol. 27, no. 3, pp. 225-231, 1985.
    [12]R. Sun, J. Tomkinson, F. Mao, and X. Sun, "Physicochemical characterization of lignins from rice straw by hydrogen peroxide treatment," Journal of Applied Polymer Science, vol. 79, no. 4, pp. 719-732, 2001.
    [13]T. Hirakawa and Y. Nosaka, "Properties of O2•-and OH• formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions," Langmuir, vol. 18, no. 8, pp. 3247-3254, 2002.
    [14]A. Boonstra and C. Mutsaers, "Adsorption of hydrogen peroxide on the surface of titanium dioxide," The Journal of Physical Chemistry, vol. 79, no. 18, pp. 1940-1943, 1975.
    [15]T. Hirakawa, K. Yawata, and Y. Nosaka, "Photocatalytic reactivity for O2− and OH radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition," Applied Catalysis A: General, vol. 325, no. 1, pp. 105-111, 2007.
    [16]P. Lu and Y.-L. Hsieh, "Preparation and properties of cellulose nanocrystals: rods, spheres, and network," Carbohydrate polymers, vol. 82, no. 2, pp. 329-336, 2010.
    [17]N. Lin and A. Dufresne, "Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees," Nanoscale, vol. 6, no. 10, pp. 5384-5393, 2014.
    [18]D. Bondeson, A. Mathew, and K. Oksman, "Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis," Cellulose, vol. 13, no. 2, p. 171, 2006.
    [19]S. Beck, J. Bouchard, and R. Berry, "Dispersibility in water of dried nanocrystalline cellulose," Biomacromolecules, vol. 13, no. 5, pp. 1486-1494, 2012.
    [20]J. Han, C. Zhou, Y. Wu, F. Liu, and Q. Wu, "Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge," Biomacromolecules, vol. 14, no. 5, pp. 1529-1540, 2013.
    [21]D. Cheng, Y. Wen, L. Wang, X. An, X. Zhu, and Y. Ni, "Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity," Carbohydrate polymers, vol. 123, pp. 157-163, 2015.
    [22]H. Kausch and G. Michler, "Effect of nanoparticle size and size‐distribution on mechanical behavior of filled amorphous thermoplastic polymers," Journal of Applied Polymer Science, vol. 105, no. 5, pp. 2577-2587, 2007.
    [23]S. Wu, "Phase structure and adhesion in polymer blends: a criterion for rubber toughening," Polymer, vol. 26, no. 12, pp. 1855-1863, 1985.
    [24]B. J. Ash, R. W. Siegel, and L. S. Schadler, "Mechanical behavior of alumina/poly (methyl methacrylate) nanocomposites," Macromolecules, vol. 37, no. 4, pp. 1358-1369, 2004.
    [25]L. Heux, G. Chauve, and C. Bonini, "Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents," Langmuir, vol. 16, no. 21, pp. 8210-8212, 2000.
    [26]K. Oksman, A. P. Mathew, D. Bondeson, and I. Kvien, "Manufacturing process of cellulose whiskers/polylactic acid nanocomposites," Composites science and technology, vol. 66, no. 15, pp. 2776-2784, 2006.
    [27]S. Fujisawa, T. Saito, S. Kimura, T. Iwata, and A. Isogai, "Comparison of mechanical reinforcement effects of surface-modified cellulose nanofibrils and carbon nanotubes in PLLA composites," Composites Science and Technology, vol. 90, pp. 96-101, 2014.
    [28]G. Gonçalves et al., "Graphene oxide modified with PMMA via ATRP as a reinforcement filler," Journal of Materials Chemistry, vol. 20, no. 44, pp. 9927-9934, 2010.
    [29]H. Dong et al., "Highly transparent and toughened poly (methyl methacrylate) nanocomposite films containing networks of cellulose nanofibrils," ACS applied materials & interfaces, vol. 7, no. 45, pp. 25464-25472, 2015.
    [30]B. J. Ash et al., "Investigation into the thermal and mechanical behavior of PMMA/Alumina Nanocomposites," MRS Online Proceedings Library Archive, vol. 661, 2000.
    [31]C. Zeng, N. Hossieny, C. Zhang, B. Wang, and S. M. Walsh, "Morphology and tensile properties of PMMA carbon nanotubes nanocomposites and nanocomposites foams," Composites Science and Technology, vol. 82, pp. 29-37, 2013.
    [32]C. Chen, D. Li, Q. Hu, and R. Wang, "Properties of polymethyl methacrylate-based nanocomposites: Reinforced with ultra-long chitin nanofiber extracted from crab shells," Materials & Design (1980-2015), vol. 56, pp. 1049-1056, 2014.
    [33]A. Kumar, Y. S. Negi, V. Choudhary, and N. K. Bhardwaj, "Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste," Journal of Materials Physics and Chemistry, vol. 2, no. 1, pp. 1-8, 2014.
    [34]B. Hinterstoisser, M. Åkerholm, and L. Salmén, "Effect of fiber orientation in dynamic FTIR study on native cellulose," Carbohydrate Research, vol. 334, no. 1, pp. 27-37, 2001.
    [35]R. Liu, H. Yu, and Y. Huang, "Structure and morphology of cellulose in wheat straw," Cellulose, vol. 12, no. 1, pp. 25-34, 2005.
    [36]W. P. F. Neto, H. A. Silvério, N. O. Dantas, and D. Pasquini, "Extraction and characterization of cellulose nanocrystals from agro-industrial residue–Soy hulls," Industrial Crops and Products, vol. 42, pp. 480-488, 2013.
    [37]R. M. Sheltami, I. Abdullah, I. Ahmad, A. Dufresne, and H. Kargarzadeh, "Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius)," Carbohydrate Polymers, vol. 88, no. 2, pp. 772-779, 2012.
    [38]L. Shang et al., "Changes of chemical and mechanical behavior of torrefied wheat straw," Biomass and Bioenergy, vol. 40, pp. 63-70, 2012.
    [39]O. Derkacheva and D. Sukhov, "Investigation of lignins by FTIR spectroscopy," in Macromolecular Symposia, 2008, vol. 265, no. 1: Wiley Online Library, pp. 61-68.
    [40]N. Brodusch, M. Yourdkhani, P. Hubert, and R. Gauvin, "Efficient cross‐section preparation method for high‐resolution imaging of hard polymer composites with a scanning electron microscope," Journal of microscopy, vol. 260, no. 2, pp. 117-124, 2015.
    [41]J. Wang, Y. Deng, Y. Qian, X. Qiu, Y. Ren, and D. Yang, "Reduction of lignin color via one-step UV irradiation," Green Chemistry, vol. 18, no. 3, pp. 695-699, 2016.

    下載圖示 校內:2024-07-31公開
    校外:2024-07-31公開
    QR CODE