簡易檢索 / 詳目顯示

研究生: 張智堯
Chih-Yao-Chang,
論文名稱: 利用微管道生成液滴與雙重包覆液滴定性方面之研究
An Qualitative Study of Generation of Droplets and Double Emulsions in Microchannels
指導教授: 李定智
Lee, Ding-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 97
中文關鍵詞: 油滴三維交錯微管道雙重包覆
外文關鍵詞: Oil droplet, 3-D cross microchannel, Double emulsion
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微全分析系統(μ-TAS)的蓬勃發展下,以微機電技術(MEMS)來製作微小尺寸的管道實驗裝置具有體積小、實驗成本低、不易受到汙染以及樣本需求少等優點,但是隨著應用方面不斷地擴展,而使得結構越來越複雜,需要越來越多的儀器來相互配合。
    本研究利用基礎的十字型以及T型結構,經過組合後成為製作上容易的三維維管道,進行油滴生成的相關研究;藉由三維管道結構降低油滴生成時壁面造成的影響力,並改變工作流體的流量來觀察油滴生成的尺寸以及頻率。並進一步在管道的上段增加能夠生成水滴的結構,進行以油滴包覆水滴的雙重包覆實驗,同樣改變工作流體來觀察可以生成雙重包覆的範圍,以及其生成的尺寸跟良率,並試圖為雙重包覆生成的趨勢依照穩定的情況分成三個區域,劃分出界線並針對界線去做探討,嘗試將雙重包覆的生成趨勢以及穩定區域做初步的劃分以減少後續研究的實驗範圍。最後對親疏水性的管道做初步的比較,嘗試找出親水性管道的油滴生成趨勢以及與疏水性管道相比其優勢所在。

    Because of the great development of micro total analysis system (μ-TAS), using micro-electromechanical system (MEMS) facilitates the micro channel experimental device and shows the advantages of small size, low cost, less pollutions, few samples for experiment and so on. However, due to the extended applications in MEMS, the structure become more complicated. As a result, we need more sophisticated devices in order to reach the goal. In this study, basic cross shape structure and T-junction structure were composed and turned into three dimensional microchannel which is easier to manufacture and fulfill the task of generation of oil droplet. By using this three dimensional structure, the effect of the wall surface can be reduced and various sizes and frequencies of droplets generated in the channel can be observed at different flow rates. Furthermore, we extended the structure to bring water droplet in the upstream of the channel and yield double emulsion. To identify three different regimes of droplet formation according to the stability of the generation trend, we recorded the generation range, size and the yield rate of double emulsions. Through this way, we are able to roughly define the boundaries between the regimes and find the stable regions.

    摘要 I Extended Abstract III 目錄 X 表目錄 XIII 圖目錄 XIV 符號說明 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 研究目的 3 1-4 文獻回顧 4 1-4-1 液滴的產生 4 1-4-2 雙重包覆的產生 5 第二章 基礎理論與微管道設計 7 2-1 流體在微管道中的流動特性 7 2-2 應用理論基礎 11 2-2-1 流體阻力 11 2-2-2 毛細數 12 2-2-3 液滴受力 13 2-2-4 流體聚焦 14 2-3 微流道構型設計 15 2-3-1 產生液滴的管道構型 15 2-3-2 產生雙重包覆的管道構型 16 第三章 實驗系統設定 17 3-1 黃光微影製程 17 3-1-1 SU-8光阻母模製作 17 3-1-2 PDMS管道製作 24 3-1-3 管道接合 25 3-2 實驗系統架構 25 3-2-1 實驗設備配置 25 3-2-2 實驗方法 27 3-2-3 實驗基本操作 28 3-2-4 工作流體的配置與介面活性劑的選擇 31 3-2-5 液滴生成的尺寸測量與頻率計算 31 第四章 結果與討論 32 4-1 管道親疏水性對液滴生成的影響 32 4-2 3DC-T油滴生成測試 34 4-2-1 固定離散相油量的油滴生成趨勢 35 4-2-2 固定連續向水量的油滴生成趨勢 36 4-3 雙重包覆生成測試 37 4-3-1 F-3DC-T管道的雙重包覆生成型態與趨勢 37 4-3-2 雙重包覆生成趨勢探討 39 4-3-3 雙重包覆穩定區內數據分析 40 4-4 實驗誤差原因與探討 44 第五章 結論 46 5-1 總結 46 5-2 未來展望 49 參考文獻 50

    1. M. S. Talary, J. P. H. Burt , R. Pethig, “Future trends in diagnosis using laboratory-on-a-chip technologies”, Parasitology, 117, 191-203, 1999.
    2. M. A. Burns, B. N. Johnson, S. N.Brahmasandra, K. Handique, J. R.Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo , D. T. Burke, “An Integrated Nanoliter DNA Analysis Device”, Science, 282, 484-487, 1998.
    3. W. Wang, Z. X. Li, R. Luo, S. H. Lu, A. D. Xu and Y. J. Yang, “Droplet-based Micro Oscillating-flowPCR Chip”, Journal of Micromechanics and Microengineering , 15, 1369-1377, 2005.
    4. T. Nisisako, T. Torii and T. Higuchi, “Droplet formation in a microchannel network”, Lab on a chip, 2, 24-26, 2002.
    5. K. Hiratsuka, A. Bohno and H. Endo, “Water droplet lubrication between hydrophilic and hydrophobic surfaces”,Journal of Physics, Conference Series, 89, 012012, 2007.
    6. S. K. Chae, C.H. Lee, S.H. Lee, T.S. Kim and J.Y. Kang, “Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase”, Lab on a chip, 9, 1957-1961, 2009.
    7. W. A. Bauer, M. Fischlechner, C. Abell and W.T. Huck, “Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions”, Lab on a chip, 10, 1814-1819 , 2010.
    8. J. Tan, J.H. Xu, S.W. Li and G.S. Luo, “Drop dispenser in a cross-junction microfluidic device: Scaling and mechanism of break-up”, Chemical Engineering Journal, 136, 306-311, 2008.
    9. J. H. Xu, S.W. Li, J. Tan and G.S. Luo, “Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping”, Microfluidics and Nanofluidics, 5, 711-717, 2008.
    10. H. Liu, Y.H. Zhang, “Droplet formation in a T-shaped microfluidic junction”, Journal of Applied Physics, 106, 034906, 2009.
    11. 蘇仁彥,「二維與三維十字型微管道之液滴生成研究」,國立成功大學航空太空工程研究所碩士論文,民國100年7月。
    12. T. Nisisako, S. Okushima and T. Torii, “Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system”, Soft Matter, 1, 23, 2005.
    13. A. S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone and D.A. Weitz , “Monodisperse double emulsions generated from a microcapillary device”, Science, 308, 537-541, 2005.
    14. S. H. Huang, W. H. Tan, F. G. Tseng and S. Takeuchi, “A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems”, Journal of Micromechanics and Microengineering, 16, 2336-2344, 2006.
    15. Y. H. Lin, C. H.Lee and G. B.Lee, “Droplet Formation Utilizing Controllable Moving-Wall Structures for Double-Emulsion Applications”, Journal of Microelectromechanical systems, 17, 3, 2008.
    16. 陳景堯,「利用三維交錯微管道生成油滴與雙重包覆液滴之研究」,國立成功大學航空太空工程研究所碩士論文,民國101年7月。
    17. H. C. Berg and E.M. Purcell, “The physics of chemoreception”, Biophysics, 20, 193-219, 1997.
    18. S. Wereley, “Nano-Bio-Micro fluids tutorial”, Nanotechuology, 2004.
    19. O. Reynolds, “An experimental investigation of the circumstances which determine whether the motion if water shall be direct or sinuous and the law of resistance in parallel channels”, Philosophical Transactions of the Royal Society of London, 174, 1883.
    20. X. F. Peng, G. P. Peterson and B. X. Wang, “Frictional flow characteristics of water flowing through rectangular microchannel”, Experimental Heat Transfer, 7, 249-264, 1994.
    21. Hak, “The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture”, Journal of Fluids Engineering, 121,P.P. 1999.
    22. P. Wu and W. A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for micro miniature Joule-Thomson refrigerators”, Cryogenics, 23, 273-277, 1983.
    23. F. M. White, “Viscous Fluid Flow”, 3rd ed McGraw. Hill, New York, (2006).
    24. P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, “Formation of Droplets and Bubbles in a Microfluidic T-junction—Scaling and Mechanism of Break-up” , Lab on a Chip, 6, 437-446, 2006.
    25. S. L. Anna, N. Bontoux and H.A. Stone, “Formation of dispersions using "flow focusing" in microchannels”, Applied Physics Letters, 82, 364 ,P.P. 2003.
    26. C. C. Chang, Z. X. Huang and R. J. Yang, “Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels”, Journal of Micromechanics and Microengineering, 17, 1479-1486, 2007.
    27. W. Kern, D.A. Poutinen, “Cleaning Solution Based on Hydrogen Peroxide for Use in Semiconductor Technology”, RCA Review, 187-190, 1970.
    28. G. W. Rubloff, “Defect Microchemistry in SiO2 /Si Structures”, Journal of Vacuum Science & Technology A: Vacuum Surface and Films, 8 ,1857-1863, 1990.
    29. N. LaBianca and J. Delorme, “High aspect ratio resist for thick film application”, Proceedings of SPIE, 2438, 846-852, 1995.

    下載圖示 校內:2017-11-20公開
    校外:2017-11-20公開
    QR CODE