| 研究生: |
郭美約 Guo, Mei-Yueh |
|---|---|
| 論文名稱: |
多重共振超穎介面之分析與應用 Investigation and application of multi-resonant metasurfaces |
| 指導教授: |
吳品頡
Wu, Pin-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 超穎介面 、布拉格反射鏡 、多重共振 、Fano共振 、多波長超穎全像 |
| 外文關鍵詞: | metasurface, distributed Bragg reflector, multi-resonance, Fano resonance, multi-wavelength meta-hologram |
| 相關次數: | 點閱:93 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文先以電磁模擬方法,從反射光譜、相位變化、電場分佈三種物理特性,由較簡單的雙層堆疊與三層堆疊布拉格反射鏡(DBR),到複雜的厚度漸變型DBR,詳細探討DBR 結合金屬薄膜的多重共振效應。研究結果顯示,此種多重共振主要以Fano譜線呈現,我們將詳細探討並總結多重Fano共振的成因。了解DBR-金屬薄膜的多重共振效應後,我們接著利用特殊設計過的布拉格反射鏡結合超穎奈米結構,設計並製作出兩種多波長超穎介面應用元件。第一種為金奈米棒結合布拉格反射鏡,並以線偏振光入射的多波長超穎半波片;第二種為銀奈米棒結合布拉格反射鏡,同時引入幾何相位效應讓奈米結構具有寬頻相位調製的能力,以應用於多波長超穎全像片。此種超穎介面的多重共振產生方式與一般超穎介面的多重共振產生方式截然不同,對未來先進光電光學的研究、發展與應用,提供了嶄新的奈米光學開發平台。
This paper firstly applied electromagnetic simulation method to scrutinize the multi-resonances in a distributed Bragg reflector (DBR) substrate combined with a metal thin film. We measured three physical properties: reflection spectrum, phase shift, and electric field distribution of various DBR modls for such purpose, from double-layer and triple-layer DBRs to the thickness-gradient DBR. The results showed that the multi-resonance mostly presented as a Fano feature in optical spectrum. The physics behind the observed multi-Fano resonance are elaborated in the thesis. After analyzing the multi-resonance of DBR-metal film, we designed two multi-wavelength metasurface components by using a specialized DBR substrate combined with meta atoms. The first component is gold nanorods combined with the DBR for realizing a multi-wavelength meta-half-wave plate. For the second component, we combined silver nanorods with the DBR for holographic imaging. The 2π phase shift is achieved by introducing geometric phase into the structural design, thus the metasurface is capable of modulating the phase of reflected light in a wide range of visible window. The proposed multi-resonant metasurface is very much different from previously reported works, which opens a brand-new platform for nanop hotonics and related application.
[1] A. Alvarez‐Fernandez, C. Cummins, M. Saba, U. Steiner, G. Fleury, V. Ponsinet, and S. Guldin, "Block copolymer directed metamaterials and metasurfaces for novel optical devices," Advanced Optical Materials 9, 2100175 (2021).
[2] W. Cai, and V. M. Shalaev, "Optical Metamaterials, vol. 10, no. 6011," (New York: Springer, 2010).
[3] N. Yu, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, "Flat optics: controlling wavefronts with optical antenna metasurfaces," IEEE Journal of Selected Topics in Quantum Electronics 19, 4700423-4700423 (2013).
[4] Q. Song, A. Baroni, R. Sawant, P. Ni, V. Brandli, S. Chenot, S. Vézian, B. Damilano, P. de Mierry, and S. Khadir, "Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces," Nature Communications 11, 1-8 (2020).
[5] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, and G.-Y. Guo, "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Letters 12, 6223-6229 (2012).
[6] P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, "Recent advances in planar optics: from plasmonic to dielectric metasurfaces," Optica 4, 139-152 (2017).
[7] N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science 340, 1304-1307 (2013).
[8] Q. Jiang, G. Jin, and L. Cao, "When metasurface meets hologram: principle and advances," Advances in Optics and Photonics 11, 518-576 (2019).
[9] W. Wan, J. Gao, and X. Yang, "Metasurface holograms for holographic imaging," Advanced Optical Materials 5, 1700541 (2017).
[10] L. Huang, S. Zhang, and T. Zentgraf, "Metasurface holography: from fundamentals to applications," Nanophotonics 7, 1169-1190 (2018).
[11] Z. L. Deng, M. Jin, X. Ye, S. Wang, T. Shi, J. Deng, N. Mao, Y. Cao, B. O. Guan, and A. Alù, "Full‐color complex‐amplitude vectorial holograms based on multi‐ freedom metasurfaces," Advanced Functional Materials 30, 1910610 (2020).
[12] L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, and C.-W. Qiu, "Three-dimensional optical holography using a plasmonic metasurface," Nature Communications 4, 1-8 (2013).
[13] B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, and Y.-F. Xiao, "Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms," Nano Letters 16, 5235-5240 (2016).
[14] H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, and R. D. Averitt, "Metamaterials on paper as a sensing platform," Advanced Materials 23, 3197-3201 (2011).
[15] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, "Plasmonic nanorod metamaterials for biosensing," Nature Materials 8, 867-871 (2009).
[16] Z. A. Zaky, A. M. Ahmed, A. S. Shalaby, and A. H. Aly, "Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation," Scientific Reports 10, 1-9 (2020).
[17] N. Yu, and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials 13, 139-150 (2014).
[18] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[19] S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).
[20] K. A. Willets, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annual Review of Physical Chemistry 58, 267-297 (2007).
[21] I. Almog, M. Bradley, and V. Bulovic, "The Lorentz oscillator and its applications," Massachusetts Institute of Technology (2011).
[22] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science 334, 333-337 (2011).
[23] Y. F. Yu, A. Y. Zhu, R. Paniagua‐Domínguez, Y. H. Fu, B. Luk'yanchuk, and A. I. Kuznetsov, "High‐transmission dielectric metasurface with 2π phase control at visible wavelengths," Laser & Photonics Reviews 9, 412-418 (2015).
[24. J. Hu, S. Bandyopadhyay, Y.-h. Liu, and L.-y. Shao, "A review on metasurface: from principle to smart metadevices," Frontiers in Physics 8, 586087 (2021).
[25] Z. e. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings," Optics Letters 27, 1141-1143 (2002).
[26] H. Ahmed, A. A. Rahim, H. Maab, M. M. Ali, N. Mahmood, and S. Naureen, "Phase engineering with all-dielectric metasurfaces for focused-optical-vortex (FOV) beams with high cross-polarization efficiency," Optical Materials Express 10, 434-448 (2020).
[27] L. Deng, Y. Zhang, J. Zhu, and C. Zhang, "Wide-band circularly polarized reflectarrayusing graphene-based pancharatnam-berry phase unit-cells for terahertz communication," Materials 11, 956 (2018).
[28] F. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, "A review of gap-surface plasmon metasurfaces: fundamentals and applications," Nanophotonics 7, 1129-1156 (2018).
[29] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, "Metasurface holograms reaching 80% efficiency," Nature Nanotechnology 10, 308-312 (2015).
[30] C. Meng, S. Tang, F. Ding, and S. I. Bozhevolnyi, "Optical gap-surface plasmon metasurfaces for spin-controlled surface plasmon excitation and anomalous beam steering," ACS Photonics 7, 1849-1856 (2020).
[31] A. Aigner, S. A. Maier, and H. Ren, "Topological-insulator-based gap-surface plasmon metasurfaces," in Photonics(2021).
[32] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Reviews of Modern Physics 82, 2257 (2010).
[33] M. F. Limonov, "Fano resonance for applications," Advances in Optics and Photonics 13, 703-771 (2021).
[34] B. Luk'Yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Materials 9, 707-715 (2010).
[35] M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, "Fano resonances in photonics," Nature Photonics 11, 543-554 (2017).
[36] Y. S. Joe, A. M. Satanin, and C. S. Kim, "Classical analogy of Fano resonances," Physica Scripta 74, 259 (2006).
[37] W. Su, Y. Liu, and B. Chen, "Multiple Fano resonances in asymmetric rectangular ring resonator based on graphene nanoribbon," Results in Physics 17, 103121 (2020).
[38] A. Dhouibi, S. Nawaz Burokur, A. Lupu, A. de Lustrac, and A. Priou, "Excitation of trapped modes from a metasurface composed of only Z-shaped meta-atoms," Applied Physics Letters 103, 184103 (2013).
[39] G.-D. Liu, X. Zhai, L.-L. Wang, Q. Lin, S.-X. Xia, X. Luo, and C.-J. Zhao, "A high-performance refractive index sensor based on Fano resonance in Si split-ring metasurface," Plasmonics 13, 15-19 (2018).
[40] Z. Wang, Y. L. Ho, T. Cao, T. Yatsui, and J. J. Delaunay, "High‐Q and Tailorable Fano Resonances in a One‐Dimensional Metal‐Optical Tamm State Structure: From a Narrowband Perfect Absorber to a Narrowband Perfect Reflector," Advanced Functional Materials 31, 2102183 (2021).
[41] C. Cui, C. Zhou, S. Yuan, X. Qiu, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, and Y. Wang, "Multiple Fano resonances in symmetry-breaking silicon metasurface for manipulating light emission," ACS Photonics 5, 4074-4080 (2018).
[42] O. Reshef, M. Saad-Bin-Alam, M. J. Huttunen, G. Carlow, B. T. Sullivan, J.-M. Ménard, K. Dolgaleva, and R. W. Boyd, "Multiresonant high-Q plasmonic metasurfaces," Nano Letters 19, 6429-6434 (2019).
[43] A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, and M. F. Limonov, "Bound states in the continuum and Fano resonances in the strong mode coupling regime," Advanced Photonics 1, 016001 (2019).
[44] S. A. S. Tali, and W. Zhou, "Multiresonant plasmonics with spatial mode overlap: overview and outlook," Nanophotonics 8, 1199-1225 (2019).
[45] N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, "Three-dimensional plasmon rulers," Science 332, 1407-1410 (2011).
[46] Y. Moritake, Y. Kanamori, and K. Hane, "Demonstration of sharp multiple Fano resonances in optical metamaterials," Optics Express 24, 9332-9339 (2016).
[47] R. J. Tilley, Colour and the optical properties of materials: an exploration of the relationship between light, the optical properties of materials and colour (John Wiley & Sons, 2010).
[48] J. Shao, G. Liu, and L. Zhou, "Biomimetic nanocoatings for structural coloration of textiles," in Active coatings for smart textiles(2016), 269-299.
[49] M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, "Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror," Physical Review B 76, 165415 (2007).
[50] O. Heavens, "Optical properties of thin films," Reports on Progress in Physics 23, 1 (1960).
[51] B. Auguié, A. Bruchhausen, and A. Fainstein, "Critical coupling to Tamm plasmons," Journal of Optics 17, 035003 (2015).
[52] A. Kavokin, I. Shelykh, and G. Malpuech, "Lossless interface modes at the boundary between two periodic dielectric structures," Physical Review B 72, 233102 (2005).
[53] E. T. Alexei Baranov Semiconductor Lasers: Fundamentals And Applications (Woodhead Publishing Limited, 2013).
[54] C. S. Wu, Y. Makiuchi, and C. Chen, "High-energy electron beam lithography for nanoscale fabrication," Lithography 13, 241 (2010).
[55] "https://www.photonicsolutions.co.uk/upfiles/SuperK_EXTREME.pdf ".
[56] "http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/quarwv.html#c3."