簡易檢索 / 詳目顯示

研究生: 林章生
Lin, Chang-Sheng
論文名稱: 相關函數法於非定常環境振動之模態參數識別研究
Modal Parameter Identification Using Non-stationary Vibration Data By Correlation Technique
指導教授: 江達雲
Chaing, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 110
中文關鍵詞: 模態參數相關函數法非定常環境振動系統識別
外文關鍵詞: random vibration, modal parameter identification, correlation technique, ITD
相關次數: 點閱:73下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   結構系統的動態特性可藉由其自然頻率、阻尼比及模態振形加以描述,而一般模態參數識別法須同時利用激勵及響應資料來識別模態參數。但許多工程結構在環境振動作用下,僅能獲得其響應資料。因此無需激勵信號的量測而直接由響應資料識別模態參數,為本文探討之重點。本文考慮當線性結構系統在環境振動下,若激勵信號可近似為非定常白訊,其響應信號間的相關函數與系統的脈衝響應或自由振動下的衰減響應有相同的數學形式。因此可將響應信號間的相關函數視為自由振動下的響應信號,從而識別模態參數,並利用模態可信度(MAC)的方法來確認識別模態。本文採用Ibrahim時域參數識別法,探討其應用於無激勵信號之模態參數識別的適用性。由數值模擬顯示,此法對即使有相近模態的系統,亦能有效地識別出模態參數。此外,考慮結構受一般非定常激勵信號,應用相關函數法與濾波器概念可求得「合成系統」的自由衰減信號函數,進而使用Ibrahim時域法識別模態參數。並可利用結構模態正交性將響應信號中假想激勵信號模態與結構模態加以區分。

      Dynamical systems can be characterized by their modal parameters, which include natural frequencies, damping ratios and mode shapes. Identification of system characteristics is usually accomplished using both input and output data from the structural system. In many cases, however, only output measurements are available for structures under ambient vibration conditions. It can be shown that if the input signals can be modeled as non-stationary white noise, which is a product of white noise and an deterministic envelope function, the theoretical auto- and cross-correlation functions of structural response have the same mathematical form as free vibration of the structure. In this thesis, the Ibrahim Time Domain method is employed as the modal identification schemes to extract modal parameters from vibration data. Through numerical simulation, the applicability of the modal parameter identification method proposed is confirmed. Furthermore, the numerical simulation is considered modal parameter identification using ambient data excited by non-stationary color noise. This is accomplished via adding, in cascade, a pseudo-force system to the structure’s system under consideration. The input to the pseudo-force system is non-stationary white noise and the output of which is the actual force(s) applied to the structure. The non-stationary white noise input(s) and the structure’s responses are then used to identify the combined system. Identification results are then sorted as either structural parameters or inputs force(s) characteristics.

    中文摘要…………………………………………………………… Ⅰ 英文摘要…………………………………………………………… Ⅱ 致謝………………………………………………………………… Ⅲ 目錄………………………………………………………………… Ⅳ 表目錄……………………………………………………………… Ⅵ 圖目錄……………………………………………………………… Ⅷ 第一章 緒論………………………………………………………… 1 1-1 引言…………………………………………………………… 1 1-2 模態分析與系統識別………………………………………… 2 1-3 文獻回顧……………………………………………………… 4 1-4 研究目的及方法……………………………………………… 7 1-5 論文架構……………………………………………………… 8 第二章 線性系統的隨機反應……………………………………… 9 2-1 隨機過程簡介………………………………………………… 9 2-2 確定性動力分析………………………………………………16 2-3 定常外力過程分析……………………………………………19 2-4 非定常外力過程的分析………………………………………21 第三章 利用環境響應資料之模態參數識別………………………23 3-1 引言……………………………………………………………23 3-2 受定常白訊激勵信號之相關函數法之理論…………………24 3-3 受非定常白訊激勵信號之相關函數法理論推導……………26 3-4 受非定常有色激勵信號濾波理論推導………………………32 3-5 結構模態正交性………………………………………………35 第四章 時域法模態參數識別理論…………………………………40 4-1 引言……………………………………………………………40 4-2 Ibrahim 時域法………………………………………………41 4-3 模態可信度(Modal Assurance Criterion, MAC)…………50 第五章 數值模擬……………………………………………………52 5-1 引言……………………………………………………………52 5-2 隨機外力過程的模擬…………………………………………52 5-3 鏈模型之模態參數識別………………………………………54 5-4 具有相近模態之參數識別……………………………………60 5-5 受非定常有色激勵訊號之系統模態參數識別………………62 第六章 結論…………………………………………………………65 參考文獻 ……………………………………………………………68 附錄…………………………………………………………………104

    [1]Ang. A. H-S. and Tang. W.H., “Probability Concepts in Engineering Planning and Design”, Vol. 1, John Wiley, 1975, Chap. 4.
    [2]Bathe, K. J., “Finite Element Procedures in Engineering Analysis”, Prentic-Hall, 1982, Chap. 9.
    [3]Beck, J. L. and Jennings, P. C., “ Structural Identification Using Linear Models and Earthquake Records”, Earthquake Engineering and Structural Dynamics, Vol. 8, 1980, pp. 145-160.
    [4]Beck, J. L., "Determining Models of Structures from Earthquake Records", Report No. EERL 78-01, California Institute of Technology, Pasadena, 1978.
    [5]Bendat, J.S. and Piersol, A.G., “Random Data: Analysis and Measurement Procedures”, John Wiley, New York, 2000.
    [6]Carne, T. G., Lauffer, J. P., Gomez, A. J. and Benjannet, H. “ Modal Testing an Immense Flexible Structure Using Natural and Artificial Excitation, ”The International Journal of Analytical and Experimental Modal Analysis, The Society of Experimental Mechanics, Oct. 1988, pp. 117-122.
    [7]Chiang D.Y. and Cheng M.S. “Model parameter identification from ambient response”, 1999, AIAA Journal, Vol. 37, pp. 513-515.
    [8]Code, H. A. Jr., “Methods and Apparatus for Measuring the Damping Characteristics of a Structures by the Random Decrement Technique ”, United States Patent No.3,620,069, 1971
    [9]Davis, W.R. and Bucciarelli, L.L, “Non-stationary Spectral Analysis for Linear Dynamic System”, AIAA Journal, Vol. 13, No. 1, 1975, pp. 25-31.
    [10]Deblauwe, R., Brown, D. L., and Allemang, R. J. (1987). “The polyreference time domain technique”, Proc. 5th Int. Modal Analysis Conf., Orlando, Fla., pp. 832-845.
    [11]Ewins, D. J., “Modal Testing: Theory and Practice”, Research Studies Press, 1984.
    [12]F. Shen, M. Zheng, D. Feng shi and F. Xu “Using The Cross-correlation Technique To Extract Modal Parameters On Response-only Data” Journal of Sound and Vibration 259(5), pp.1163-1179, 2003
    [13]H. Vold and G. F. Rocklin.“The Numerical Implementation of a Multi-Input Modal Estimation Method for Mini-Computers”, International Modal Analysis Conference Proceedings, Nov. 1982.
    [14]Ibrahim, S. R.,Brincker, R. and Asmussen, J. C., “Modal Parameter Identification from Responses of General Unknown Random Inputs ”, Proceedings of the 14th International Model Analysis Conference, Vol. 1, 1996, pp. 446-452.
    [15]Ibrahim, S. R., and Fullekrug, U., 1990, “Investigation into Exact Normalization of Incomplete Complex Modes by Decomposition Trasformation”, Proceedings of 8th International Modal Analysis Conference, Kissimmee, FL, pp. 205-212.
    [16]Ibrahim, S. R.,“Computation of Normal Modes from Identified Complex Modes”, AIAA Journal, Vol. 21, No. 3, 1983, pp. 446-451.
    [17]Ibrahim, S. R. and Pappa, R. S., “Large Survey Testing Using the Ibrahim Time Domain (ITD) Model Identification Algorithm, ” Journal of Spacecraft and Rockets, Vol. 19, Sept.-Oct. 1982 , pp. 459-465.
    [18]Ibrahim, S. R. and Mikulcik, E. C., “A Method for the Direst Identification of Vibration Parameters from Free Response”, Shock and Vibration Bulletin, Vol. 47, Pt. 4, Sept. 1977, pp. 183-198.
    [19]Ibrahim, S. R. and Mikulcik, E. C., “The experimental Determination of Vibration Parameters from Time Responses”, Shock and Vibration Bulletin, Vol. 46, Pt. 5, Aug. 1976, pp. 183-198.
    [20]James, G. H., Carne. T. G. and Lauffer, J. P., “The Natural Excitation Technique for Modal Parameter Extraction from Operating Wind Yurbines.” SAND92-1666. UC-261, Sandia National Aboratories, 1993.
    [21]Juang, J, -N., Cooper, J. E. and Wright, J. R., “An Eigensystem Realization Algorithm Using Data Correlations (ERA/DC) for Modal Parameter Identification”, Control-Theory and Advanced Technology, Vol. 4, No. 1, 1988, pp. 5-14.
    [22]Juang, J, -N. and Pappa, R .S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Modal Reduction”, Journal of Guidance and Control Dynamics, AIAA, Vol. 8, No. 5, 1985, pp.620-627.
    [23]Kennedy, S. R. and Pancu, C. D. P. “Use of Vectors in Vibration Measurement and Analysis”, Journal of Aeronautics Sciences, Vol. 14, No. 11, 1974, pp. 603-625.
    [24]Kirshenboim, J., “ Real vs. Complex Mode Shapes”, Proceeding of 5th International Modal Analysis Conference, London, England, 1987, pp. 1594-1599.
    [25]Lin, Y.K., “Probabilitstic Theory of Structural Dynamics”, McGraw-Hill, New York, 1967
    [26]Meirovitch, L., Principles and Techniques of Vibrations, Prentic Hall International, Inc., 1997
    [27]Newland, D.E., “ An Introduction to Random Vibrations and Spectral Analysis”, 1975, Chap. 7.
    [28]Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach to Modal Analysis, Part I: Theory”, Journal of Sound and Vibration, Vol. 122, No. 3, 1988, pp. 413-422.
    [29]Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach to Modal Analysis Via State Space,” Transactions ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 107, 1985, pp. 132-137.
    [30]Pandit, S. M. and Wu, S. M., “Time Series and System Analysis with Applications”, John Wiley & Sons, Inc., New York, 1983.
    [31]Pappa, R. S. and Ibrahim, S. R., “A Parametric Study of Ibrahim Time Domain Modal Analysis”, Shock and Vibration Bulletin, Vol. 51, Part. 3, 1981, pp. 43-72.
    [32]Shinozuka, M. and Deodatis, G., “Simulation of Stochastic Processes by Spectral Representation,” Applied Mechanics Reviews, Vol. 44, No. 4, 1991, pp. 191-203.
    [33]Shinozuka, M. and Jan, C.-M., “Digital Simulation of Random Processes and its Applications,” Journal of Sound and Vibration, Vol. 25, No. 1, 1972, pp. 111-128.
    [34]Shinozuka, M., “Simulation of Multivariate and Multidimensional Random Processes”, Journal of the Acoustical Society of America, Vol. 49, No. 1. 1971, pp. 357-367.
    [35]Shinozuka, M., “Random Process witj Evolutionary Power”, J. Eng. Mech. Div., ASCE, Vol. 96, EM4, 1970, pp. 543-545.
    [36]Ward Heylen, Stefan Lammens and Paul Sas, “Modal Analysis Theory and Testing, 2nd ed.” ,Katholieke Universiteit Leuven, Faculty of Engineering, Dept. of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, 1998.
    [37]Wei, M. L., Allemang, R. J. and Brown, D. L., 1987, “Real-Normalization of Measured Complox Modes,” Proceedings of 5th International Modal Analysis Conference, London, England, pp. 708-712.
    [38]林其璋、高雍超、王哲夫, “應用部份量測反應之結構系統識別”, 中國土木水利工程學刊, Vo1.7, No. 3, 1995, pp.307-316
    [39]黃炯憲、葉錦勳、林憲忠、葉公贊, “ 隨機遞減法在微震量測之應用-比例阻尼系統”, 國家地震工程研究中心研究報告編號:NCREE-96-013, 1996
    [40]鄭銘勢,“時域模態參數識別法之應用“, 碩士論文, 國立成功大學航空太空工程學研究所, 1997
    [41]詹啟鋒,“受環境振動之系統參數識別“, 碩士論文, 國立成功大學航空太空工程學研究所, 2000

    下載圖示 校內:立即公開
    校外:2004-07-27公開
    QR CODE