| 研究生: |
侯博勳 Hou, Po-Hsun |
|---|---|
| 論文名稱: |
微試件靜態及動態機械性質量測系統之研發及量測 Development of a Measurement System to Measure Static and Dynamic Mechanical Properties of Miniature Specimens |
| 指導教授: |
陳元方
Chen, Yuan-Fang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 電子斑點干涉術 、微小試件 、機械性質 、單軸向拉伸 、振動模態 、激振 、自然頻率 |
| 外文關鍵詞: | mode shapes, ESPI, natural frequencies, miniature specimens, vibration, uni-axial tensile testing |
| 相關次數: | 點閱:100 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著微機電系統科技的發展,微小裝置(如微感測器(micro-sensor)、微型致動器(micro-actuator)等)的製作需確定其可靠度及其使用壽命,才能將之運用於實際場合。由於微型結構的材料機械性質(如強度、楊氏係數(Young’s modulus)、浦松比(Poisson ratio)…等)受到製程的參數影響,不同的製作參數,製作的結構將表現出不同的機械性質,故在作微結構之設計時,不能以相同材料在大尺寸下之機械性質為設計參數,需瞭解在微小尺寸下之機械性質後方可運用,故需對於微小試件進行研究及實驗。
目前的微機電或微光機電系統及其組件之製作,通常都含有多種材料或材料的組合而成,以具體展現出感測或致動上所需的各種功能。由於微結構的材料行為會明顯的受到製程技術的影響,微結構的材料性質不能直接由大尺寸試件的結果依比例推算而來,因此,必須直接對微小試件作測試,以了解其在承受負載時之機械行為。
由於單軸向拉伸之力學模型最為單純,也最為準確,故本文利用單軸向拉伸試驗,將試件外型設計為一狗骨頭狀,並設計一夾頭及六軸位置微調機構,可輕易將微小試件精確定位並夾持固定,並以壓電致動器(Piezo)對試件進行拉伸,再以測力計(Load Cell)量得試件之受力,以圖控式控制軟體(Labview)將其整合,成為一自動量測系統,可自動操作實驗儀器並紀錄實驗數據,再自動計算出微結構之機械性質。
為進一步得知微結構之動態性質,將試件製成懸臂樑之模式,以訊號產生器(Function Generator)控制一激振器(Shaker)對試件進行激振,再以電子斑點干涉術(ESPI)之光學量測方法配合顯微鏡對微結構之動態性質進行分析及量測,其自然頻率及振動模態與理論值相比較,誤差低於10%,為可接受之誤差範圍。
Along with the development in MEMS technology, the mechanical properties of miniature materials should be confirmed to insure the reliability and durability. The mechanical properties of micro-structures affect the performance and reliability of MEMS devices such as micro sensors and actuators. Understanding the mechanical behaviors by directly testing the micro samples becomes indispensable The performance of miniature materials is different from that in large size. The main theme of this paper is to develop a measurement system to measure the mechanical properties such as elastic tensile property, Poisson ratio, natural frequencies, and mode shapes of miniature materials. We present an automatic uni-axial tensile testing system to measure the mechanical properties of a miniature specimen that was developed. The tensile specimens are “dog-bone” shaped of different sizes and ending in a large “paddle” for convenient gripping by the tester. By employing the PZT actuator and the load cell, the system records the force-displacement history and automatically evaluates the Young’s modulus of the specimen under test. Application of the system to test various sizes of specimens is demonstrated. The bending stress caused by the active force location on specimen is easily ignored. This could cause large experimental error. The size effect of mechanical properties on miniature specimen is found. This research provides a method of measuring the mechanical properties of copper and silicon thin film and indicates some factors such as loading position that should be noted.
Additionally, we provided a real time optical measurement method to evaluate the natural frequency, mode shape, and Young’s modulus of miniature specimen. The method was carried out using Electronic Speckle Pattern Interferometry (ESPI), which could be applied to detect the natural frequencies and to visualize the mode shapes of vibrating object. In addition, the Young’s modulus was determined by experiment results. ESPI is convenient to study small and weak objects because of non-contact and full field. It was successfully applied to study cantilever micro-beams. Measured results are agreement well with theoretical solutions, error less than 10%, and lead to the determination of Young’s modulus of miniature specimens.
參考文獻
1. A. J. Griffin, Jr., F. R. Brotzen, and C. F. Dunn, “Mechanical properties and microstructures of Al-1%Si thin film metallization,” Thin Solid Films, Vol. 150, PP. 237-244, 1987.
2. T. P. Weihs, S. Hong, J. C. Bravman, and W. D. Nix, “Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films,” J. Master. Res., Vol. 3, no. 5, PP. 931-942, Sept./Oct. 1988.
3. T. Tsuchiya, O. Tabata, J. Sakata, and Y. Taga, “Specimen Size Effect on Tensile Strength of Surface-Micromachined polycrystalline silicon thin films,” Journal of Microelectromechanical System, Vol. 7, No. 1, PP. 106-113, 1998.
4. G. Vendroux and W.G. Knauss, “ Submicron Deformation Field Measurements: Part 1. Developing a Digital Scanning Tunneling Microscope ”, Exp. Mech., Vol. 38, pp. 18-23, 1998.
5. G. Vendroux and W.G. Knauss, “ Submicron Deformation Field Measurements: Part 2. Improved Digital Image Correlation ”, Exp. Mech., Vol. 38, pp. 85-92, 1998.
6. G. Vendroux, N. Schmidt and W.G. Knauss, “ Submicron Deformation Field Measurements: Part 3. Demonstration of Deformation Determinations ”, Exp. Mech., Vol. 38, pp. 154-160, 1998.
7. W.N. Sharpe, K.T. Turner and R.L. Edwards, “ Tensile Testing of Polysilicon ”, Exp. Mech., Vol. 39, pp. 162-170, 1999.
8. W. N. Sharpe and K. Jackson “ Tensile Testing of MEMS Materials ”, Proceedings of the Micro scale Systems: Mechanics and Measurements Sympos W.G. Knauss and I. Chasiotis, “ A New Micro tensile Tester for the Study of MEMS Materials with the Aid of Atomic Force Microscopy ”, Exp. Mech., Vol. 42, pp. 51-57, 2002.ium, pp. ix-xiv, June 8, 2000.
9. W.G. Knauss and I. Chasiotis, “ A New Micro tensile Tester for the Study of MEMS Materials with the Aid of Atomic Force Microscopy ”, Exp. Mech., Vol. 42, pp. 51-
10. M. A. Haque, and M. T. A. Saif, “In-suit Tensile Testing of Nana-scale Specimen in SEM and TEM,” Experimental Mechanics, Vol. 42, No. 1, PP. 123-128, 2002.
11. R.L. Edwards, G. Coles and W.N.Sharpe, Jr,“Comparison of Tensile and Bulge Tests for Thin-Film Silicon Nitride”, Exp. Mech., Vol. 44, pp. 49-54, 2004.
12. P. GU, H. MIAO, Z. T. LIU, X. P. WU, J. H. ZHAO, “Investigation of elastic modulus of nanoporous alumina membrane”, JOURNAL OF MATERIALS SCIENCE., Vol. 39, pp. 3369 – 3373, 2004.
13. D.S.Gianola and W.N.Sharpe,Jr, “Techniques for Testing Thin Films in Tension”,Experimental Techniques,Vol 28,p23-27,2004.
14. X.Y. Ye, Z.Y. Zhou, Y.Yang, J.H. Zhang, and J.Yao , “Determination of the mechanical properties of microstructures”, Sensors and Actuators, Vol. A54, pp. 750-754, 1996.
15. M. Hoummady , E. Farnault , H. Kawakatsu , and T. Masuzawa, “Applications of dynamic techniques for accurate determination of silicon nitride Young’s modulus”, Proc. Transducers. Vol. 1, pp. 615-618, 1997.
16. H. Moussa, F. Etienne, K. Hideki, and M. Takahisa, “Application of Dynamic Techniques for Accurate determination of Silicon Nitride Young’s Moduli”, IEEE International Conference on Solid-State Sensors and Actuators, pp. 615-618, 1997.
17. J. Wlde, T. J. hubbard, “Measurement of MEMS Displacements and Frequencies Using Laser Interferometry”, Proceedings of 1999 IEEE Canadian Conference on Electrical and Computer Engineering, pp. 1680-1685, 1999.
18. J. Wlde, T. J. hubbard, “Elastic Properties and Vibration of Micro-machined Structures Subject to Residual Stresses”, Proceedings of 1999 IEEE Canadian Conference on Electrical and Computer Engineering, pp. 1674-1679, 1999.
19. J. Wlde, T. J. hubbard, “Frequency Changes in Aerodynamically Excited Resonating Micromachined Beams”, IEEE 2000.
20. M.V. Andres, M.J. Tudor, and K.W.H. Fould, “Analysis of interferometric optical fiber detection technique applied to silicon vibrating sensors”, Electron Lett, Vol. 23(15), pp. 775-5.
21. A. Guttierez, D. Edmans, G. Seidler, M. Conerty, S. Aceto, E. Westervelt, M. Burrage , and C. Cormeau, “MEMS metrology station based on two interferometers”, Proc SPIE, Vol. 3225, pp. 23-31, 1997.
22. J.F. Manceau, L. Robert, O. Bastien, C. Oytana, and S. Biwersi, “Measurement of residual stresses in a plane using a vibrational technique-application to electric nickel coatings”, J. Microelectromech Systems, Vol. 5(4), pp. 243-249, 1996.
23. K.L. Turner, P.G. Hartwell, N.C. MacDonald, “Multidimensional MEMS motion characterization using laser vibrometry”, Proc Transducer, Vol. 1, pp. 1144-1147, 1999.
24. G.C. Brown, R.J. Pryputniewicz, “Holographic microscope for measuring displacements of vibrating microbeams using time-averaged, electro-optic holography”, Opt Eng, Vol. 37, pp. 1398-1405, 1988.
25. P. Aswendt, R. Hofling, and K. Hiller, “Testing microcomponent by speckle interferometry”, Proc SPIE 3825, pp. 165-173, 1999.
26. G. C. Jin, X. F. Yao, and N. K. Bao, “Applications of speckle metrology to vibration and deformation measurements of electronic”, pp. 253-255, IEEE 2000.
27. S. petitgrand, R. Yahiaoui, K. Danaie, A. Bosseboeuf, “3D measurement of micromechanical devices vibration mode shapes with a stroboscopic interferometric micrpscope”, Optics and Laser in Engineering, Vol. 36, pp. 77-101, 2001.
28. Chien-ching Ma and Chi-Hung Huang, “The Investigation of Three-Dimensional Vibration for Piezoelectric Rectangular Parallelepipeds Using the AF-ESPI Method”, IEEE Transactions on Ultrasonics, Feroelectrics, and Frequency Control, Vol. 48, No. 1, pp. 142-153, 2001.
29. J. M. Burch, and J. M. J. Tokarski, "Production of Multiple Beam Fringes from Photographic Scatters", Optica Acta, Vol. 15, No. 2, pp. 101-111, 1968.
30. E. Archbold and A. E. Ennos, "Displacement Measurement from Double-Exposure Laser Photographs", Optica Acta, Vol. 19, No. 4, pp. 253-271, 1972.
31. D. E. Duffy, "Measurement of Surface Displacement Normal to the Line of Sight", Experimental Mechanics, Vol. 14, pp. 378-384, 1974.
32. A. A. Sundi, and F. P. Chiang, "Separation of 3-D Displacement Components in the White Light Speckle Method", Optics & Laser Technology, Vol. 15, pp. 41-45, 1983.
33. J. N. Butters and J. A. Leendertz, “Holographic and Video Techniques Applied to Engineering Measurement”, J. Measurement and Control, Vol. 4, pp. 349-354, 1971.
34. C. Wykes, “Use of Electronic Speckle Pattern Interferometry(ESPI) in the Measurement of Static and Dynamic Surface Displacements”, Optical Engineering, Vol.21, No.3, pp.400-406, 1982.
35. U. M. Chaudhari, A. R. Ganesan, Chandra Shakher, P.B. Godbole, and R. S. Sirohi, “Investigation of In-Plane Displacement Measurement”, Meas. Sci. Technol. Vol. 1, pp.1024-1030, 1990.
36. A. J. Moore and J. R. Tyrer, “An Electronic Speckle Pattern Interferometry for Complete In-Plane Displacement Measurenent”, Meas. Sci, Technol. Vol. 1, pp. 1024-1030, 1990.
37. S. Winther, “3D Strain Measurements Using ESPI”, Optics and Lasers in Engineering, Vol. 8, pp. 45-47, 1988.
38. R. Hofling, P. Aswendt, W. Totzauer and W. Juptner, “DSPI:A Tool for Analyzing Thermal Strain on Ceramic and Composite Materials”, SPIE, Vol. 1508, Industrial Application of Holographic and Speckle Measuring Techniques, pp.136-142, 1991.
39. T. Malmo, O. J. Lfkberg and G. A. Slettemoen, “Interferometric Testing at Very High Temperatures by TV Holography(ESPI)”, Experimental Mechanics, Vol. 28, No.3, pp. 315-321, 1988.
40. A. R. Ganesan, “Measurement of Poisson’s Ratio Using Real-Time Digital Speckle Pattern Interferometry”, Optics and Lasers in Engineering, Vol. 15, No. 3, pp. 19-23, 1991.
41. J. Lfkberg and J. T. Malmo, “Detection of Defects in Composite Materials by TV Holography”, NDT International, Vol. 21, No.4, pp.223-228, 1988.
42. Vikhagen, “Nonrestrictive Testing by Use of TV-Holography and Deformation Phase Gradient Calculation”, Applied Optics, Vol. 29, pp.137-144, 1990.
43. P. Nokes and G. L. Cloud, “The Application of Interferometric Techniques to the NDT of Composite Materials”, Proceedings of the 1995 SEM ”50th Anniversary” Spring Conference on Experimental Mechanics. Pp. 358-365, 1993.
44. R. Sousa and A. A. Goncalves, Jr., “Rubber to Metal Debonds Detection in Rubber Covered Cylinders by Use ESPI and Image Processing”, Proceedings of the 1995 SEM “50th Anniversary” Spring Conference on Experimental Mechanics, pp. 788-794.
45. Ei-Chung Wang, Chi-Hung Hwang and Shu-Yu Lin, “Vibration Measurement by the Time-Avaraged Electronic Speckle Pattern Interferometry Methods”, Applied Optics, Vol. 35, No. 22, 4502-4509, 1996.
46. R. Ganesan, P. Meinlschmidt, K. D. Hinsch, ”Vibration Mode Separation Using Comparative Electronic Speckle Pattern Interferometry(ESPI)”, Optics Communications, 107, pp.28-34, 1994.
47. Y. Y. Hung, “Digital Shearography versus TV-holography for Non-destructive Evaluation”, Optics and Lasers in Engineering, 26(1997)421-436.
48. Y. I. Ostrovsky, M. M. Butusov, and G. V. Ostrovskaya, Interferometry by Holography (Springer-Verlag, New York, 1980), Chap. 1, p. 11.
49. Catherine Wykes, “Use of Electronic Speckle Pattern Interferometry(ESPI) in the Measurement of Static and Dynamic Surface Displacements”, OPTICAL ENGINEERING, Vol. 21 No.3, p.400-406 (1982).
50. S. Timoshenko, D. H. Young, and W. Weaver JR, “Vibration problems in engineering”, 4th edition, John Wiley & Sons, pp. 415-427, 1974.
51. Pramod K. Rastogi, and Daniele Inaudi, “Trends in Optical Nondestructive Testing and Inspection”, Elsevier Science, pp. 309-313, 2000.
52. R. C. Hibbler, Mechanics of Materials, 3rd edition, Prentice Hall, 1997.
53. T.C. Chu, W.F. Ranson, M.A. Sutton and W.H. Peters, “ Applications of Digital Image Correlation Techniques to Experimental Mechanics ”, Exp. Mech., Vol. 25, pp. 232-244, 1985.
54. M.A. Sutton, M. Cheng, W.H. Peters, Y.J. Chao, and S.R. McNeil, “ Application of an Optimized Digital Image Correlation Method to Planar Deformation Analysis ”, Image and Vision Computing, Vol. 4, pp. 143-150, 1986.
55. H.A. Bruck, S.R. McNeil, M.A. Sutton and W.H. Peters, “ Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correction ”, Exp. Mech., Vol. 29, pp. 261-267, 1989.