| 研究生: |
陳堂弘 Chen, Tang-Hong |
|---|---|
| 論文名稱: |
應用大渦流數值模擬於球面散熱片之紊流流場及其熱傳分析 Large Eddy Simulation Applied to Turbulent Flow and Heat Transfer for Dimpled Fin |
| 指導教授: |
吳鴻文
Wu, Horng-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 大渦流數值模擬 、散熱鰭片 、球面形狀 、強制對流 、熱傳增益 |
| 外文關鍵詞: | Large eddy simulation(LES), fin, dimple, forced convection, heat transfer |
| 相關次數: | 點閱:132 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討運用大渦流模擬分析突起散熱片之三維暫態的流場及熱傳現象。本文利用有限體積法(FVM)離散Navier-Stokes方程式和能量方程式並化成代數方程組。接著運用解壓力耦合方程的半隱式方法(SIMPLE, Semi-Implicit Method for Pressure-Linked Equation) 迭代至收斂,獲得流場及溫度場。此模擬將九片鰭片放置於490 mm x34 mm x245 mm通道內之底面,改變突起高度(0, 0.4, 0.8, 1.2 mm)和雷諾數(3500, 5000, 6500),分析不考慮重力作用強制對流之溫度場與速度場分佈。
研究結果顯示:突起鰭片可以在鰭片間產升渦流,提高突起高度會影響內部和周圍的流場。從鰭片之平均紐賽數上看到,在Re等於6500時,0.8 mm高度鰭片之平均紐賽數約比平面鰭片高2%,而高度1.2 mm之突起鰭片也會追上。而在低雷諾數時,平面的鰭片有較高之平均紐賽數,但亦接近0.8 mm高度突起鰭片之平均紐賽數,而0.4 mm 突起鰭片之平均紐賽數為最低。
This study investigates the transient three-dimensional heat transfer of fin module by LES in forced convection and numerically analyzes the turbulent flow field and heat transfer performance. The Navier-Stokes equations and energy equation are constructed by the Finite Volume Method (FVM) and then are discretized to a system of algebraic equations. They can be solved by semi-implicit method for pressure-linked equation (SIMPLE). The solutions must be iterated to converge within each step to obtain the temperature and flow field.
This simulation places a nine fins on the bottom surface of a channel (490 mm x34 mm x245 mm) and changes the height of dimple (0, 0.4, 0.8 and 1.2 mm) with three different Re (3500, 5000 and 6500) to investigate the temperature and flow field without gravity in forced convection.
The results indicated that the dimpled fin can generate vortex between fins, and increases the influences of height of dimple the flow field in and around fins. From averaged Nu profiles, the Nu of F2 (0.8 mm) is higher than that of F0 (0 mm) about 1.9%, and the Nu of F3 becomes more close to that of F0 at Re=6500. At low Re, the Nu of F0 is the highest, but that of F2 is close and that of F1 is the lowest.
[1] A.I. Zografos, and J.E. Sunderland, “Natural convection from pin fin arrays”, Experimental Thermal and Fluid Science, Vol.3, p409-440, 1990.
[2] R. Bessaih, and M. Kadja, “Turbulent natural convection cooling of electronic components mounted on a vertical channel”, Applied Thermal Engineering, Vol.20, p141-154, 2000.
[3] S.V. Naidu, V.D. Rao, B.G. Rao, A. Sombabu, and B. Sreenivasulu, “Natural convection heat transfer from fin arrays-experimental and theoretical study on effect of inclination of base on heat transfer”, ARPN Journal of Engineering and Applied Sciences, Vol.5, p.381-386, 2010.
[4] G. Ledezma, and A. Bejan, “Heat sinks with sloped plate fins in natural and forced convection”, International Journal of Heat Mass Transfer, Vol.39, p.1773-1783, 1996.
[5] H.R. Goshayeshi, M. Fahiminia, and M.M. Naserian, “Numerical modeling of natural convection on various configuration of rectangular fin arrays on vertical base plates”, World Academy of Science, Engineering and Technology, Vol.73, p.91-96, 2011.
[6] M. Behnia, D. Copeland, and D. Soodphakdee, “A comparison of heat sink geometries for laminar forced convection: Numerical simulation of periodically developed flow”, IEEE, Vol.98, p.310-315, 1998.
[7] S.A. El-Sayed, S.M. Mohamed, A.M. Abdel-latif, and A.E. Abouda, “Investigation of turbulent heat transfer and fluid flow in longitudinal Rectangular-Fin arrays of different geometries and shroud din array”, Experimental Thermal and fluid Science, Vol.26, p.879-900, 2002.
[8] R.A. Wirtz, W. Chen, and R. Zhou, “Effect of flow bypass on the performance of longitudinal fin heat sink”, Journal of Electronic Packaging, Vol.116, p.206-211, 1994.
[9] H. Jonsson, B. Palm, “Thermal and hydraulic behavior of plate fin and strip fin heat sink under varying bypass conditions”, IEEE Transactions on Components and Packaging Technologies, Vol.23, p.47-54, 2000.
[10] E. Yu, Y. Joshi, “Heat transfer enhancement from enclosed discrete components using pin–fin heat sinks”, Internal Journal of Heat and Mass Transfer, Vol.45, p.4957-4966, 2002.
[11]S.W. Chang, H.W. Wu, D.Y. Guo, J.J Shi, T.H. Chen, “Heat transfer enhancement of vertical dimpled fin array in natural convection”, Internal Journal of Heat and Mass Transfer, Vol.106, p.781-792, 2017.
[12] C. Silva, D. Park, E. Marotta, L. Fletcher, “Optimization of Fin Performance in a Laminar Channel Flow Through Dimpled Surfaces”, Journal of Heat Transfer, Vol.131, 021702, 2009.
[13] V.N. Afanasyev, Y.P. Chudnovsky, A.I. Leontiev, P.S. Roganov, “Turbulent Flow Friction and Heat Transfer Characteristics for Spherical Cavities on a Flat Plate”, Experimental Thermal and Fluid Science, Vol.7, p.1-8, 1993.
[14] S.W. Chang, K.F. Chiang, T.L. Yang, C.C. Huang, “Heat transfer and pressure drop in dimpled fin channel”, Experimental Thermal and Fluid Science, Vol.33, p.23-40, 2008.
[15] P.M. Ligrani, G.I. Mahmood, J.L. Harrison, C.M. Clayton, D.L. Nelson, “Flow structure and local Nusselt number variations in a channel with dimples and protrusions on opposite walls”, International Journal of Heat and Mass transfer, Vol.44, p.4413-4425, 2001.
[16] K.S. Yang, J. H. Ferziger, “Large-Eddy Simulation of Turbulent Obstacle Flow Using Dynamic Subgrid-Scale Model”, AIAA Journal, Vol.31, p.1406-1413, 1993.
[17] P. R. Spalart, “Strategies for turbulence modelling and simulations”, International Journal of Heat and fluid Flow, Vol.21, p.252-263, 2000.
[18] J. Franke, W. Frank, “Large eddy simulation of the flow past a circular cylinder at 〖Re〗_D=3900”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.90, p.1191-1206, 2002.
[19] X. Ma, G.-S. Karamanos, G. E. Karniadakis, “Dynamics and low-dimensionality of a turbulent wake”, Journal Fluid Mechanics, Vol.410, p.29-65, 2000.
[20] L. Ong, J. Wallace, “The velocity field of the turbulent very near wake of a circular cylinder”, Experiments Fluids, Vol.20, p.441-453, 1996.
[21] A. Ojofeitimi, Y. Hattori, “Wall-resolver large eddy simulation of turbulent mixed-convection transfer along a heated vertical flat plate”, International Journal of heat and Mass Transfer, Vol.109, p.428-439, 2017.
[22] T. dairay, E. Lamballais, S. Laizet, J.C. Vassilicos, “Numerical dissipation vs. subgrid-scale modelling for large eddy simulation”, Journal of Computational Physics, Vol.337, p.252-274, 2017.
[23] J. Wen, D. Tang, Z. Wang, J. Zhang, Y. Li, “Large-Eddy Simulation of flow and heat transfer of the flat finned tube in direct air-cooled condensers”, Applied Thermal Engineering, Vol.61, p.75-85, 2013.
[24] M.A. Elyyan, A. Rozati, D.K. Tafti, “Investigation of dimpled fins for heat transfer enhancement in compact heat exchangers”, International Journal of Heat and Mass Transfer, Vol.51, p.2950-2966, 2008.
[25] R.H. Pletcher, J.C. Tannehill, D.A. Anderson, “Computational Fluid Mechanics and Heat Transfer”, CRC Press, New York, 2013.
[26] J. Smagorinsky, “General Circulation Experiments with the Primitive Equations.”, Monthly Weather Review, Vol.91, p.99-164, 1963.
[27] W.K. Anderson, D.L. Bonhus, “An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids”, Computers Fluids, Vol.23, p.1-21, 1994.
[28] S.V. Patankar, “Numerical Heat Transfer and Fluid Flow”, McGraw-Hill, New York, 1980.
[29] A. Bejan, “Convection heat transfer”, John Wiley and Sons Inc., New York, 1985.
[30] F.P. Incropera, D.P. Dewitt, “Fundamentals of heat transfer and mass transfer4/e”, John Wiley and Sons Inc., New York, 1997.
[31] J. Ahn, J.S. Lee, “Large eddy simulation of flow and heat transfer in a channel with a detached”, International Journal of Heat and Mass Transfer, Vol.53, p.445-452, 2010.