簡易檢索 / 詳目顯示

研究生: 鍾文陽
Chung, Wen-Yung
論文名稱: 表面硫化銅銦鎵二硒薄膜應用於太陽能電池之研究
A Study of Sulfurization Cu(InGa)Se2 Skin Layer Used for Solar Cell Applications
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 78
中文關鍵詞: 硫化薄膜太陽能電池銅銦鎵硒硫硫化程度
外文關鍵詞: Sulfurization, Thin film solar cell, Cu(InGa)SeS, Sulfurization degree
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用共電鍍方式取代傳統物理氣相沉積法(濺鍍),來製備Cu-In-Ga先驅物於不鏽鋼基板上,經由硒化的方式形成Cu(InGa)Se2 (CIGS)薄膜。最後以硫化CIGS薄膜表面層以頓化或修復CIGS表面之缺陷,可藉由硫化摻入少許的硫於CIGS薄膜並達到提升元件開路電壓(Voc)的目的。

    本論文研究先驅物的成分、硒化溫度與時間、硫化方式與硫化溫度等的實驗參數對薄膜及元件特性的影響,以XRD、SEM、EDS及拉曼光譜分析,對薄膜進行晶體結構、表面形態、組成成分進行分析。

    最後製作出Cu(InGa)SeS (CIGSS)薄膜太陽能電池,由電壓-電流特性曲線,目前最佳之元件有顯著之二極體特性,其量測數據如下:Voc(開路電壓)=179mV、Jsc(短路電流)=30.97 mA/cm2、F.F.(填充因子)=26%、η(電池效率)=1.46%。

    In this thesis I used co-electroplating method, instead of traditional physical vapor deposition, to deposition Copper–Indium-Gallium precursors on the flexible stainless steel substrate , followed by a selenization process to form Cu(InGa)Se2 (CIGS) absorber layer and used surface sulfurization the skin layer of the CIGS film to passivate and/or repair the surface defects. The sulfurization process can replace some Se with S which can increase the open-circurt voltage of the solar cell.

    In this study, the influences of the compositions of the precursors, selenazation temperature and duration, method of sulfurization, and the degree of sulfurization on the CIGS film and on the device characteristics were investigated. A SEM was used to observe the film’s morphology, crystalline phase and orientation were determined by XRD and Raman analysis, and an EDS was used to analyze the compositions of the absorber layer.

    Finally, Cu(InGa)SeS (CIGSS) thin film solar cells were fabricated and tested.The best device has remarkable diode characteristics.The key parameters are: Voc(open-circuit voltage)=179 mV、Jsc(short-circuit current)=30.97 mA/cm2、F.F.(fill factor)=26%、η=1.46%.

    中文摘要/I Abstract/II 目錄/IV 表目錄/VI 圖目錄/VII 第一章 緒論/1 1-1前言/1 1-2 太陽能電池的發展演進/2 1-3太陽能電池材料與種類/3 1-4 太陽能光譜/5 1-5 太陽能電池基本原理/7 1-5-1光電效應/7 1-5-2光伏原件的原理/8 1-6研究動機/12 第二章 Cu(InGa)Se2薄膜太陽能電池/13 2-1 Cu(InGa)Se2介紹/13 2-1-1 Cu(InGa)Se2薄膜材料特性與晶體結構/13 2-1-2 Cu(InGa)Se2的優勢/16 2-1-3 Cu(InGa)Se2常見的製作方式/17 2-2 Cu(InGa)Se2太陽能電池之結構/21 2-3 電化學簡介/27 2-3-1 電鍍基本裝置及電鍍系統/27 2-3-2 電鍍基本原理 /28 2-3-3 循環伏安法(Cyclic Voltammetry)/29 2-3-4 定電位電解法(Chronoamperometry)/30 2-3-5 法拉第定律/30 第三章 實驗/32 3-1 實驗所需材料及實驗設備之介紹/32 3-1-1實驗使用之材料、藥品、實驗設備規格/32 3-1-2 電鍍系統/33 3-1-3 濺鍍系統/34 3-1-4高溫爐管系統/35 3-2實驗流程/37 3-2-1不鏽鋼基板之清洗/38 3-2-2濺鍍鉻(Cr)阻障層/39 3-2-3濺鍍鉬(Mo)背電極/39 3-2-4共電鍍銅銦鎵(Cu-In-Ga)金屬先驅層/39 3-2-5硒化(selenization)製程/40 3-2-6硫化(sulfurization)製程/41 3-2-7 KCN蝕刻/43 3-2-8沉積硫化鎘(CdS)薄膜/43 3-2-9濺鍍 i-ZnO/45 3-2-10 濺鍍AZO/45 3-2-11 濺鍍銀電極(Ag)/46 3-3分析儀器原理介紹/46 3-3-1掃描式電子顯微鏡(SEM)/47 3-3-2能量分散式光譜儀(EDS)/49 3-3-3 X光繞射儀(XRD)/50 3-3-4拉曼光譜儀(Raman spectroscopy)/53 3-3-5化學分析電子光譜儀(ESCA)及歐傑電子能譜儀(AES)/55 3-3-6太陽光模擬器與IV量測系統/59 第四章 結果與討論/60 4-1鉻(Cr)阻障特性 /60 4-2硒化製程/60 4-2-1硒化溫度對MoSe2形成的影響/60 4-2-2 Cu-rich/Cu-poor先驅物硒化後之表面形態/62 4-3 硫化製程/64 4-3-1高溫真空爐退火硫化/64 4-3-2低溫硫化XRD分析及拉曼分析比對/66 4-3-3 兩區域加熱爐管硫化/68 4-4效率量測/69 第五章 結論/72 第六章 參考文獻/73

    [1] 莊嘉琛, 太陽能工程-太陽電池篇, 全華科技圖書, 台灣, (2003).
    [2] 戴寶通, 鄭晃忠, 太陽能電池技術手冊, P.10-11, (2008).
    [3] 劉炘, 太陽能簡介, 台灣, (2006).
    [4] 楊德仁, 太陽能電池材料, 五南圖書出版公司, 台灣, P.7, (2008).
    [5] S.O. Kasap,"光電子學”台灣培生教育出版公司,P279-298,台灣,(2006)
    [6] William N. Shafarman, Lars Stolt ,“Cu(InGa)Se2 Solar Cells”, John Wiley & Sons, (2003).
    [7] Godecke T, Haalboom T, Ernst F, “Phase equilibria of Cu-In-Se I.Stable states and nonequilibrium states of the In2Se3-Cu2Se subsystem”, Z. Metallkd , 622–634 (2000).
    [8] Ye J,Yoshida T,Nakamura Y,Nittono O,“Realization of giant optical rotatory power for red and infrared light using III2VI3 compound semiconductor (GaxIn1-x)2Se3”, Jpn. J. Appl. Phys, 35,
    395–400, (1996).
    [9] Zhang S,Wei S,Zunger A,“Stabilization of ternary compounds via ordered arrays of defect Pairs”,Phys.Rev.Lett.P78, 4059–4062, (1997).
    [10] R.N. Bhattacharya, J. Keane,Electrodeposition of In-Se, Cu-Se,and Cu-In-Se thin films, Journal of The Electrochemical Society, USA, Vol.143, P.854, (1996).
    [11] R.N. Bhattacharya, P.J. Sebastian, X. Mathew,Preparation and characterization of copper indium diselenide films by electroless deposition, Solar Energy Materials and Solar Cells, USA, Vol.66, P.316, (2000).
    [12] P.J. Sebastian, E. Calixto, A. Fernandez, Journal of Crystal Growth, Mexico,Vol.169, P.287, (1996).
    [13]R.Friedfeld, R.P. Raffaelle, J.G. Mantovani, Electrodeposition of CuInxGa1-xSe2 thin films, Solar Energy Materials and Solar Cells, USA, Vol. 58, P.375-385, (1999).
    [14] M. Kaelin, D. Rudmann, A.N. Tiwari,”Low cost processing of CIGS thin film solar cells”, Solar Energy, 77, 749–756(2004).
    [15] D. Mattox, “Handbook of Physical Vapor Deposition (PVD) Processing”, Noyes Publ., Park Ridge, NJ, (1998).
    [16] R. K. Pandey, S. N. Sahu and S. Chandra, “Handbook of Semi- conductor Electrodeposition”, Marcel Dekker, New York, (1996).
    [17] S. P. Grindle, A. H. Clark, S. R.Serej, J. Mcneily and L. L. Mcneily, “The effects of doping sb on properties of CuInSe2 thin-film solar cells”, Applied Physics, 51, p.10, (1980) .
    [18] D. Pottier and G. Maurin, “ Preparation of polycrystalline thin films of CuInSe2 by electrodeposition”, Appl. Electrochem, 19, p.361, (1989).
    [19]R. N. Bhattacharya and A. M. Fernandez, “CuIn1-xGaxSe2-based photo- voltaic cells from electrodeposited precursor films”, Solar Energy Materials & Solar Cells, 76, p.331, (2003).
    [20] A. Kampmann, V. Sittinger, J. Rechid and R. Reineke-Koch , “Large area electrodeposition of Cu(In,Ga)Se2”,Thin Solid Films, 361-362, p.309, (2000).
    [21] B. Mmler, M. Powalla and H.W. Schock, “CIS-based thin film photovoltaic modules”, Prog. Photovolt: Res.Appl, 10, p.149, (2002).
    [22] T.J. Vink, M.A.J. Somers, J.L.C. Daams and A.G. Dirks, “Stress, strain, and microstructure of sputter-deposited Mo thin films”, applied physics, 70, p.4301, (1991).
    [23] R.Wuerz,A.Eicke,M.Frankenfeld,F.Kessler,M.Powalla, P.Rogin and O.Yazdani-Assl, “CIGS thin-film solar cells on steel substrates”, Thin Solid Films, 517, p.2415 ,(2009).
    [24] M. Hartmann, M. Schmidt, A. Jasenek and H. W. Schock “FLEXIBLE AND LIGHT WEIGHT SUBSTRATES FOR Cu(In,Ga)Se SOLAR CELLS AND MODULES”,638,(2000).
    [25] F.Kessler and D. Rudmann,“Technological aspects of flexible CIGS solar cells and modules”, Solar Energy, 77, p.685, (2004).
    [26] J. Song,S.S.Li,C.H. Huang,O.D. Crisalle and T.J.Anderson, Device modeling and simulation of the performance of Cu(In1-x,Gax)Se2 solar cells, Solid-State Electronics 48 73-79,(2004).
    [27] Tokio Nakada, Hiroki Ohbo, Takayuki Watanabe, Hidenobu Nakazawa,Masahiro Matsui , Akio Kunioka “Role of incorporated sulfur into the surface of Cu(InGa)Se2 thin-"lm absorber”, Solar Energy Materials & Solar Cells 67247~253 (2001).
    [28] Tokio Nakada, Hiroki Ohbo, Takayuki Watanabe, Hidenobu Nakazawa, Masahiro Matsui, Akio Kunioka,” Cu(In,Ga)(S,Se) thin film solar cells by surface sulfurization” Solar Energy Materials and Solar Cells 49 285-290(1997).
    [29] 蕭宏,半導體製程技術導論,台灣培生教育出版公司, p.461,(2007).
    [30] 何生龍,彩色電鍍技術,化學工業出版社,(2008)。
    [31] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, “Properties of 19.2% Efficiency ZnO/ CdS/ CuInGaSe2 Thin-film Solar Cells”, Prog. Photovolt: Res. Appl., 11, p.225, (2003).
    [32] N. Fathy, R. Kobayashi and M. Ichimura,“Preparation of ZnS thin films by the pulsed electrochemical deposition”, Materials Science and Engineering, 107, p. 271, (2004).
    [33] R. Schaffler and H.W. Schock, “High mobility ZnO:Al thin films grown by reactive DC magnetron sputtering”, CONFERENCE RECORD IEEE , 93, p.1026, (1993).
    [34] 尤光先,電鍍工程學,徐氏基金會出版,1976年。
    [35] 賴耿陽,實用電鍍技術全集,復漢出版社,1981年。
    [36] 何生龍,彩色電鍍技術,化學工業出版社,2008年。
    [37] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, “Properties of 19.2% Efficiency ZnO/ CdS/ CuInGaSe2 Thin-film Solar Cells”, Prog. Photovolt: Res. Appl., 11, p.225, (2003).
    [38]陳力俊等編著,材料電子顯微鏡,儀科中心出版。
    [39] M. E. Calixto, R. N. Bhattacharya, P. J. Sebastian, A. M. Fernandez, S. A.Gamboa and R. N. Noufi, “Cu(In,Ga)Se2 based photovoltaic structure by electrodeposition and processing”, Solar Energy Materials and Solar Cells, 55, p.23, (1998).
    [40] 許樹恩,吳泰伯,X光繞射原理與材料結構分析,中國材料學 會, p.169,1996年。
    [41]陳俊龍,AES/ESCA表面分析技術於工業材料上的應用,工業材料106期,p69,1995年。
    [42] M. Hartmann, M. Schmidt, A. Jasenek, H.W. Schock, F. Kessler, K. Herz, M. Powalla, Flexible and light weight substrates for Cu(In,Ga)Se2 solar cells and modules, in: Conference Record of the 28th IEEE Photovoltaic Specialists Conference, pp. 638–641, (2000).
    [43]Fawcett, Eric. Spin-density-wave antiferromagnetism in chromium. Reviews of Modern Physics. 60: 209, (1988).
    [44] Lyon: International Agency for Research on Cancer. 1999-11-05 1990.
    [45] T. Nakada, D. Iga, H. Ohbo, A. Kunioka “Effects of Sodium on Cu(In,Ga)Se2-Based Thin Films and Solar Cells”, Appl. Phys., 36, p.732, (1997).
    [46] W.N. Shafarman, J.E. Phillips, in: Proceedings of the 25th IEEE Photovoltaic Specialists Conference,Washington D.C., USA, May 13– 17, pp. 917, (1996).
    [47] T. Wada, N. Kohara, T. Negami, M. Nishitani, Jpn. J. Appl. Phys. 35 L1253, (1996).
    [48] D.Abou-Rasa, G. Kostorz, D. Bremaud, M. K7linb, F.V. Kurdesau,A.N.Tiwari, M. Dfbeli” Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 basedsolar cells” Thin Solid Films 480–481 (2005).
    [49] A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi,A.M. Hermann: Appl. Phys. Lett. 65, 198 (1994)
    [50] Andrew M. Gabor a, John R. Tuttle a, Michael H. Bode a,Amy Franz a, Andrew L. Tennant a, Miguel A. Contreras a,Rommel Noufi a, D. Garth Jensen b, Allen M. Hermann c.” Band-gap engineering in Cu(In,Ga) Se 2 thin filmsgrown from (In,Ga) 25e3 precursors” Solar Energy Materials and Solar Cells 41/42 247-260 (1996)
    [51] J. Kessler, D. Schmid, H. Dittrich, H.W. Schock: In Proc. 12th Europ. Photovolt. Solar Energy Conf., ed. by R. Hill, W. Palz, P. Helm p. 648, (1994).
    [52] A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, A.M. Hermann: Appl. Phys. Lett. 65, 198 (1994).
    [53] J. Bekker, V. Albers, M.J. Witcomb, Thin Solid Films 387 (2001).
    [54]W.K.Kim, E.A. Payzant, S. Yoon , T.J. Anderson” In situ investigation on selenization kinetics of Cu–In precursor using time-resolved, high temperature X-ray diffraction” Journal of Crystal Growth 294 231–235,(2006).

    下載圖示 校內:立即公開
    校外:2014-07-10公開
    QR CODE