| 研究生: |
曾柏翰 Tseng, Po-Han |
|---|---|
| 論文名稱: |
基於原子系綜的通訊波段量子轉頻和糾纏保持量子記憶體 Telecom-Band Quantum Frequency Conversion and Entanglement-Preserving Quantum Memory Based on Atomic Ensemble |
| 指導教授: |
陳泳帆
Chen, Yong-Fan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 量子頻率轉換 、量子記憶體 、量子通訊 、量子資訊處理 、量子光學 |
| 外文關鍵詞: | Quantum frequency conversion, Quantum memory, Quantum communication, Quantum information processing, Quantum optics |
| ORCID: | 0009-0006-4529-485X |
| 相關次數: | 點閱:69 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在基於光纖傳輸的量子網路架構,通訊頻段對於量子節點間的長距離量子資訊傳輸至關重要。然而,近紅外波段是透過鹼金族原子進行量子資訊儲存和處理的最佳波段。考慮到需要高效率地彌合原子量子設備和通訊光纖間的頻率間隙,同時保持光子攜帶的量子資訊,量子頻率轉換是應對這種挑戰的一種關鍵的量子介面。在這項研究中,我們探索了一種高效的通訊頻段量子轉頻機制,該轉頻機制是基於銣原子鑽石型能階的四波混頻,使光子能夠在795奈米的近紅外波長和1367或1529奈米的通訊頻段間進行轉換。我們使用海森堡-朗之萬方法來最佳化在各種光學深度下的轉換效率並提供對應的實驗參數,同時我們的模型考慮量子雜訊的影響。與先前忽略應用光場吸收損耗的工作不同,我們的理論模型更符合現實世界的情況。此外,我們採用約化密度算符理論建構理論框架,並利用該理論證明鑽石型四波混頻方案可以高保真度地維持輸入光子的量子特性,例如正交方差和光子統計。重要的是,這些量子特性不會受到真空場雜訊的干擾,使系統能夠實現高純度的量子轉頻。另一個重要貢獻在於研究此量子轉頻方案如何影響以光子數、路徑和偏振自由度編碼的量子資訊。這些編碼的量子位元在足夠高的轉換效率下表現出顯著的糾纏保留。對於完美的轉換效率,此方案可以達到完美保真度。這項綜合探索為基於原子系綜的鑽石型量子轉頻方案在量子網路的應用奠定了必要的理論基礎,是推進此量子轉頻方案在分散式量子計算和長距離量子通訊中使用的關鍵基礎研究。
在量子資訊科學領域,量子態的高效儲存與檢索對於某些關鍵應用是不可或缺的,包括但不限於量子中繼器、確定性單光子或多光子源以及線性光量子計算。因此,量子記憶體的實現一直是關鍵的研究熱點。在這項研究中,我們探索了一種高效的量子儲存方案,該方案利用原子系綜中的Λ型電磁波誘發透明機制實現量子記憶體。此儲存機制使我們能夠透過操縱外部的同調光場來對量子光脈衝的傳播進行相干控制。利用暗態極激子描述,我們推導了在絕熱極限之下,量子記憶體操作週期內任意給定時間的旋波原子算符和光場算符。我們的模型考慮基態間的去同調,使我們的模型更接近現實世界的條件。此外,我們採用約化密度算符理論建立多模態理論框架,並利用該理論證明Λ型量子儲存方案可以高保真度地保持輸入光子的量子特性,包括光子統計和量子糾纏。我們研究的另一個關鍵在於分析此方案如何影響各種自由度中編碼的量子資訊,包括光子數、路徑和偏振自由度。當儲存效率足夠高時,N個量子位元的糾纏態將得到良好的保存。對於完美的儲存效率,檢索的量子態將達到完美保真度。我們的深入研究為在量子計算和量子網路中實現基於原子系綜的Λ型量子儲存方案提供了必要的理論基礎。這項基礎研究對於此方案在量子資訊處理和長距離量子通訊的未來發展至關重要。
In a fiber-based quantum network, the utilization of the telecom band is crucial for long-distance quantum information (QI) transmission between quantum nodes. However, the near-infrared wavelength is identified as optimal for storing and processing QI through alkaline atoms. Recognizing the challenge of efficiently bridging the frequency gap between atomic quantum devices and telecom fibers while maintaining the QI carried by photons, quantum frequency conversion (QFC) serves as a pivotal quantum interface. In this study, we explore an efficient telecom-band QFC mechanism based on diamond-type four-wave mixing (FWM) with rubidium energy levels. The mechanism enables the conversion of photons between the near-infrared wavelength of 795 nm and the telecom band of 1367 or 1529 nm. Using the Heisenberg-Langevin approach, we optimize conversion efficiency (CE) across varying optical depths while considering quantum noises and present corresponding experimental parameters. Unlike previous works neglecting the applied field absorption loss, our results are more relevant to practical scenarios. Moreover, by employing the reduced-density-operator theory to construct a theoretical framework, we demonstrate that this diamond-type FWM scheme can maintain the quantum characteristics of input photons with high fidelity, such as quadrature variances and photon statistics. Importantly, these properties remain unaffected by vacuum field noise, enabling the system to achieve high-purity QFC. Another significant contribution lies in examining how this scheme impacts QI encoded in photon-number, path, and polarization degrees of freedom (DOFs). These encoded qubits exhibit remarkable entanglement retention under sufficiently high CE. In the case of perfect CE, the scheme can achieve unity fidelity. This comprehensive exploration establishes a theoretical foundation for the application of the diamond-type QFC scheme based on atomic ensembles in quantum networks, laying essential groundwork for advancing the scheme in distributed quantum computing and long-distance quantum communication. The content in this paragraph is adapted from [Po-Han Tseng, et. al., Phys. Rev. A 109, 043716 (2024)] and [Po-Han Tseng, et. al., arXiv:2401.09768 (2024)].
In the realm of QI science, the efficient storage and retrieval of quantum states are indispensable for crucial applications, including but not limited to quantum repeaters, deterministic single-photon or multi-photon generation, and linear optical quantum computing. As a result, the realization of quantum memories constitutes a pivotal research focus. In this study, we explore an efficient quantum memory scheme using the Λ-type electromagnetically induced transparency in atomic ensembles. The storage mechanism enables the coherent control of quantum light pulse propagation through the manipulation of an external coherent field. Using the dark-state polariton description, we derived the spin-wave atomic operator and the field operator at any given time within the quantum memory operation cycle in the adiabatic limit. The consideration of ground state decoherence brings our model closer to real-world conditions. Moreover, through employing the reduced-density-operator theory to establish a multimode framework, we demonstrate that the Λ-type quantum memory scheme can preserve the quantum characteristic of input photons with high fidelity, including photon statistics and quantum entanglement. A key aspect of our research involves analyzing how this scheme affects QI encoded in various DOFs, including photon-number, path, and polarization. The N-qubit entangled state is well-preserved when storage efficiencies are adequately high, reaching unity fidelity for perfect storage efficiencies. Our thorough investigation provides a theoretical foundation for implementing the Λ-type quantum memory scheme based on atomic ensembles in quantum computing and quantum networks. This groundwork is crucial for the future development of this scheme in QI processing and long-distance quantum communication. The content in this paragraph is being prepared for submission to a journal, and the manuscript is currently in preparation [Po-Han Tseng and Yong-Fan Chen, Entanglement preserving quantum memory based on Λ-type electromagnetically induced transparency, Manuscript in preparation (2024)].
[1] P.-H. Tseng, L.-C. Chen, J.-S. Shiu, and Y.-F. Chen, Quantum interface for telecom frequency conversion based on diamond-type atomic ensembles, Phys. Rev. A 109, 043716 (2024).
[2] P.-H. Tseng, L.-C. Chen, J.-S. Shiu, and Y.-F. Chen, Quantum interface for telecom frequency conversion based on diamond-type atomic ensembles, arXiv:2401.09768 (2024).
[3] P.-H. Tseng and Y.-F. Chen, Entanglement preserving quantum memory based on Λ-type electromagnetically induced transparency, Manuscript in preparation (2024).
[4] H. J. Kimble, The quantum internet, Nature 453, 1023 (2008).
[5] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2010), 10th anniversary edition.
[6] P. P. Rohde, The Quantum Internet: The Second Quantum Revolution (Cambridge University Press, Cornwall, 2021).
[7] D. Cuomo, M. Caleffi, and A. S. Cacciapuoti, Towards a distributed quantum computing ecosystem, IET Quantum Commun. 1, 3 (2020).
[8] N. Gisin and R. Thew, Quantum communication, Nat. Photonics 1, 165 (2007).
[9] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Linear optical quantum computing with photonic qubits, Rev. Mod. Phys. 79, 135 (2007).
[10] J. L. O’Brien, Optical quantum computing, Science 318, 1567 (2007).
[11] F. Flamini, N. Spagnolo, and F. Sciarrino, Photonic quantum information processing: a review, Rep. Prog. Phys. 82, 016001 (2018).
[12] W.-B. Gao, X.-C. Yao, J.-M. Cai, H. Lu, P. Xu, T. Yang, C.-Y. Lu, Y.-A. Chen, Z.-B. Chen, and J.-W. Pan, Experimental measurement-based quantum computing beyond the cluster-state model, Nat. Photonics 5, 117 (2011).
[13] S. Takeda and A. Furusawa, Toward large-scale fault-tolerant universal photonic quantum computing, APL Photonics 4, 060902 (2019).
[14] B. Bartlett, A. Dutt, and S. Fan, Deterministic photonic quantum computation in a synthetic time dimension, Optica 8, 1515 (2021).
[15] K. Yonezu, Y. Enomoto, T. Yoshida, and S. Takeda, Time-Domain Universal Linear-Optical Operations for Universal Quantum Information Processing, Phys. Rev. Lett. 131, 040601 (2023).
[16] A. I. Lvovsky, B. C. Sanders, and W. Tittel, Optical quantum memory, Nat. Photonics 3, 706 (2009).
[17] C. Simon, M. Afzelius, J. Appel, A. B. de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, Quantum memories, Eur. Phys. J. D 58, 1 (2010).
[18] K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, Quantum memories: emerging applications and recent advances, J. Mod. Opt. 63, 2005 (2016).
[19] Y. Lei, F. K. Asadi, T. Zhong, A. Kuzmich, C. Simon, and M. Hosseini, Quantum optical memory for entanglement distribution, Optica 10, 1511 (2023).
[20] H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, A single-atom quantum memory, Nature 473, 190 (2011).
[21] J. Jin, E. Saglamyurek, Marcel. lí Grimau Puigibert, V. Verma, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits, Phys. Rev. Lett. 115, 140501 (2015).
[22] P. Vernaz-Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble, Nat. Commun. 9, 363 (2018).
[23] H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber, Opt. Express 15, 7853 (2007).
[24] P. Kurpiers, M. Pechal, B. Royer, P. Magnard, T. Walter, J. Heinsoo, Y. Salathé, A. Akin, S. Storz, J.-C. Besse, S. Gasparinetti, A. Blais, and A. Wallraff, Quantum Communication with Time-Bin Encoded Microwave Photons, Phys. Rev. Appl. 12, 044067 (2019).
[25] J. F. Dynes, A. Wonfor, W. W.-S. Tam, A. W. Sharpe, R. Takahashi, M. Lucamarini, A. Plews, Z. L. Yuan, A. R. Dixon, J. Cho, Y. Tanizawa, J.-P. Elbers, H. Greißer, I. H. White, R. V. Penty, and A. J. Shields, Cambridge quantum network, npj Quantum Inf. 5, 101 (2019).
[26] F. B. Basset, M. Valeri, E. Roccia, V. Muredda, D. Poderini, J. Neuwirth, N. Spagnolo, M. B. Rota, G. Carvacho, F. Sciarrino, and R. Trotta, Quantum key distribution with entangled photons generated on demand by a quantum dot, Sci. Adv. 7, eabe6379 (2021).
[27] A. Napoli, N. Calabretta, J. K. Fischer, N. Costa, S. Abrate, J. Pedro, V. Lopez, V. Curri, D. Zibar, E. Pincemin, S. Grot, G. Roelkens, C. Matrakidis, and W. Forysiak, Perspectives of Multi-band Optical Communication Systems, 2018 23rd Opto-Electronics and Communications Conference (OECC) (IEEE, Jeju, 2018), p. 1-2.
[28] P. Kumar, Quantum frequency conversion, Opt. Lett. 15, 1476 (1990).
[29] N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, Photonic quantum state transfer between a cold atomic gas and a crystal, Nature 551, 485 (2017).
[30] M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion, Nat. Commun. 9, 1998 (2018).
[31] T. van Leent, M. Bock, R. Garthoff, K. Redeker, W. Zhang, T. Bauer, W. Rosenfeld, C. Becher, and H. Weinfurter, Long-Distance Distribution of Atom-Photon Entanglement at Telecom Wavelength, Phys. Rev. Lett. 124, 010510 (2020).
[32] X. Han, W. Fu, C.-L. Zou, L. Jiang, and H. X. Tang, Microwave-optical quantum frequency conversion, Optica 8, 1050 (2021).
[33] A. J. Stolk, K. L. van der Enden, M.-C. Roehsner, A. Teepe, S. O. J. Faes, C. E. Bradley, S. Cadot, J. van Rantwijk, I. te Raa, R. A. J. Hagen, A. L. Verlaan, J. J. B. Biemond, A. Khorev, R. Vollmer, M. Markham, A. M. Edmonds, J. P. J. Morits, T. H. Taminiau, E. J. van Zwet, and R. Hanson, Telecom-Band Quantum Interference of Frequency-Converted Photons from Remote Detuned NV Centers, PRX Quantum 3, 020359 (2022).
[34] T. van Leent, M. Bock, F. Fertig, R. Garthoff, S. Eppelt, Y. Zhou, P. Malik, M. Seubert, T. Bauer, W. Rosenfeld, W. Zhang, C. Becher, and H. Weinfurter, Entangling single atoms over 33 km telecom fibre, Nature 607, 69 (2022).
[35] X.-Y. Luo, Y. Yu, J.-L. Liu, M.-Y. Zheng, C.-Y. Wang, B. Wang, J. Li, X. Jiang, X.-P. Xie, Q. Zhang, X.-H. Bao, and J.-W. Pan, Postselected Entanglement between Two Atomic Ensembles Separated by 12.5 km, Phys. Rev. Lett. 129, 050503 (2022).
[36] J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters, Opt. Lett. 35, 2804 (2010).
[37] J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis, Opt. Express 19, 21445 (2011).
[38] M. A. Albota and F. N. C. Wong, Efficient single-photon counting at 1.55 µm by means of frequency upconversion, Opt. Lett. 29, 1449 (2004).
[39] M. A. Albota, F. N. C. Wong, and J. H. Shapiro, Polarization-independent frequency conversion for quantum optical communication, J. Opt. Soc. Am. B 23, 918 (2006).
[40] C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, Quantum Up-Conversion of Squeezed Vacuum States from 1550 to 532 nm, Phys. Rev. Lett. 112, 073602 (2014).
[41] Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, Orbital angular momentum photonic quantum interface, Light Sci. Appl. 5, e16019 (2016).
[42] F. Mann, H. M. Chrzanowski, F. Gewers, M. Placke, and S. Ramelow, Low-noise quantum frequency conversion in a monolithic cavity with bulk periodically poled potassium titanyl phosphate, Phys. Rev. Appl. 20, 054010 (2023).
[43] R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths, Opt. Lett. 29, 1518 (2004).
[44] S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, A photonic quantum information interface, Nature 437, 116 (2005).
[45] R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, Wide-band quantum interface for visible-to-telecommunication wavelength conversion, Nat. Commun. 2, 537 (2011).
[46] M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, Highly efficient frequency conversion with bandwidth compression of quantum light, Nat. Commun. 8, 14288 (2017).
[47] N. Maring, D. Lago-Rivera, A. Lenhard, G. Heinze, and H. de Riedmatten, Quantum frequency conversion of memory-compatible single photons from 606 nm to the telecom C-band, Optica 5, 507 (2018).
[48] M. Heuck, J. G. Koefoed, J. B. Christensen, Y. Ding, L. H. Frandsen, K. Rottwitt, and L. K. Oxenløwe, Unidirectional frequency conversion in microring resonators for on-chip frequency-multiplexed single-photon sources, New J. Phys. 21, 033037 (2019).
[49] H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, Quantum Frequency Translation of Single-Photon States in a Photonic Crystal Fiber, Phys. Rev. Lett. 105, 093604 (2010).
[50] A. S. Clark, S. Shahnia, M. J. Collins, C. Xiong, and B. J. Eggleton, High-efficiency frequency conversion in the single-photon regime, Opt. Lett. 38, 947 (2013).
[51] S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, Ramsey Interference with Single Photons, Phys. Rev. Lett. 117, 223601 (2016).
[52] Y.-P. Huang, V. Velev, and P. Kumar, Quantum frequency conversion in nonlinear microcavities, Opt. Lett. 38, 2119 (2013).
[53] Z. Vernon, M. Liscidini, and J. E. Sipe, Quantum frequency conversion and strong coupling of photonic modes using four-wave mixing in integrated microresonators, Phys. Rev. A 94, 023810 (2016).
[54] Q. Li, M. Davanço, and K. Srinivasan, Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics, Nat. Photonics 10, 406 (2016).
[55] C.-Y. Cheng, J.-J. Lee, Z.-Y. Liu, J.-S. Shiu, and Y.-F. Chen, Quantum frequency conversion based on resonant four-wave mixing, Phys. Rev. A 103, 023711 (2021).
[56] S. E. Harris, J. E. Field, and A. Imamoğlu, Nonlinear optical processes using electromagnetically induced transparency, Phys. Rev. Lett. 64, 1107 (1990).
[57] M. D. Lukin, Colloquium: Trapping and manipulating photon states in atomic ensembles, Rev. Mod. Phys. 75, 457 (2003).
[58] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77, 633 (2005).
[59] H. Hsu, C.-Y. Cheng, J.-S. Shiu, L.-C. Chen, and Y.-F. Chen, Quantum fidelity of electromagnetically induced transparency: the full quantum theory, Opt. Express 30, 2097 (2022).
[60] Z.-Y. Liu, J.-S. Shiu, C.-Y. Cheng, and Y.-F. Chen, Controlling frequency-domain Hong-Ou-Mandel interference via electromagnetically induced transparency, Phys. Rev. A 108, 013702 (2023).
[61] C.-K. Chiu, Y.-H. Chen, Y.-C. Chen, I. A. Yu, Y.-C. Chen, and Y.-F. Chen, Low-light-level four-wave mixing by quantum interference, Phys. Rev. A 89, 023839 (2014).
[62] C.-Y. Lee, B.-H. Wu, G. Wang, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, High conversion efficiency in resonant four-wave mixing processes, Opt. Express 24, 1008 (2016).
[63] Z.-Y. Liu, J.-T. Xiao, J.-K. Lin, J.-J. Wu, J.-Y. Juo, C.-Y. Cheng, and Y.-F. Chen, High-efficiency backward four-wave mixing by quantum interference, Sci. Rep. 7, 15796 (2017).
[64] J.-Y. Juo, J.-K. Lin, C.-Y. Cheng, Z.-Y. Liu, I. A. Yu, and Y.-F. Chen, Demonstration of spatial-light-modulation-based four-wave mixing in cold atoms, Phys. Rev. A 97, 053815 (2018).
[65] C.-Y. Cheng, Z.-Y. Liu, P.-S. Hu, T.-N. Wang, C.-Y. Chien, J.-K. Lin, J.-Y. Juo, J.-S. Shiu, I. A. Yu, Y.-C. Chen, and Y.-F. Chen, Efficient frequency conversion based on resonant four-wave mixing, Opt. Lett. 46, 681 (2021).
[66] C.-Y. Cheng, Quantum Frequency Conversion Based on Resonant-Type Quantum Nonlinear Optics, Doctor of Philosophy, National Cheng Kung University, School of Physics (2021).
[67] A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, A quantum memory with telecom-wavelength conversion, Nat. Phys. 6, 894 (2010).
[68] Y. O. Dudin, A. G. Radnaev, R. Zhao, J. Z. Blumoff, T. A. B. Kennedy, and A. Kuzmich, Entanglement of Light-Shift Compensated Atomic Spin Waves with Telecom Light, Phys. Rev. Lett. 105, 260502 (2010).
[69] W.-H. Zhang, Y.-H. Ye, L. Zeng, M.-X. Dong, E.-Z. Li, J.-Y. Peng, Y. Li, D.-S. Ding, and B.-S. Shi, Telecom-wavelength conversion in a high optical depth cold atomic system, Opt. Express 31, 8042 (2023).
[70] J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment, Phys. Rev. A 51, 576 (1995).
[71] L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond, and C. Jurczak, Quantum computing with neutral atoms, Quantum 4, 327 (2020).
[72] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletić, and M. D. Lukin, Quantum phases of matter on a 256-atom programmable quantum simulator, Nature 595, 227 (2021).
[73] P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter, D. Barredo, K.-N. Schymik, V. Lienhard, L.-P. Henry, T. C. Lang, T. Lahaye, A. M. Läuchli, and A. Browaeys, Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms, Nature 595, 233 (2021).
[74] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer, M. Kwon, M. Ebert, J. Cherek, M. T. Lichtman, M. Gillette, J. Gilbert, D. Bowman, T. Ballance, C. Campbell, E. D. Dahl, O. Crawford, N. S. Blunt, B. Rogers, T. Noel, and M. Saffman, Multi-qubit entanglement and algorithms on a neutral-atom quantum computer, Nature 604, 457 (2022).
[75] S. J. Evered, D. Bluvstein, M. Kalinowski, S. Ebadi, T. Manovitz, H. Zhou, S. H. Li, A. A. Geim, T. T. Wang, N. Maskara, H. Levine, G. Semeghini, M. Greiner, V. Vuletić, and M. D. Lukin, High-fidelity parallel entangling gates on a neutral-atom quantum computer, Nature 622, 268 (2023).
[76] Y. O. Dudin, L. Li, and A. Kuzmich, Light storage on the time scale of a minute, Phys. Rev. A 87, 031801(R) (2013).
[77] S.-J. Yang, X.-J. Wang, X.-H. Bao, and J.-W. Pan, An efficient quantum light–matter interface with sub-second lifetime, Nat. Photonics 10, 381 (2016).
[78] L. Ma, O. Slattery, and X. Tang, Optical quantum memory based on electromagnetically induced transparency, J. Opt. 19, 043001 (2017).
[79] Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, Efficient quantum memory for single-photon polarization qubits, Nat. Photonics 13, 346 (2019).
[80] G. Buser, R. Mottola, B. Cotting, J. Wolters, and P. Treutlein, Single-Photon Storage in a Ground-State Vapor Cell Quantum Memory, PRX Quantum 3, 020349 (2022).
[81] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics, Nature 414, 413 (2001).
[82] Z.-B. Chen, B. Zhao, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, Fault-tolerant quantum repeater with atomic ensembles and linear optics, Phys. Rev. A 76, 022329 (2007).
[83] Y. Yu, F. Ma, X.-Y. Luo, B. Jing, P.-F. Sun, R.-Z. Fang, C.-W. Yang, H. Liu, M.-Y. Zheng, X.-P. Xie, W.-J. Zhang, L.-X. You, Z. Wang, T.-Y. Chen, Q. Zhang, X.-H. Bao, and J.-W. Pan, Entanglement of two quantum memories via fibres over dozens of kilometres, Nature 578, 240 (2020).
[84] H. H. Jen and T. A. B. Kennedy, Efficiency of light-frequency conversion in an atomic ensemble, Phys. Rev. A 82, 023815 (2010).
[85] H.-H. Jen, Theory of light-matter interactions in cascade and diamond type atomic ensembles, Doctor of Philosophy, Georgia Institute of Technology, School of Physics (2010).
[86] P. Kolchin, Electromagnetically-induced-transparency-based paired photon generation, Phys. Rev. A 75, 033814 (2007).
[87] F. Kheirandish, Quantum dynamics of a driven damped harmonic oscillator in Heisenberg picture: exact results and possible generalizations, Eur. Phys. J. Plus 135, 243 (2020).
[88] L. Ma, O. Slattery, and X. Tang, Optical Quantum Memory and its Applications in Quantum Communication Systems, J. Res. Natl. Inst. Stan. 125, 125002 (2020).
[89] B. Jing, S. Wei, L. Zhang, D. Zhou, Y. He, X. Zou, W. Pan, H.-Z. Song, and L. Yan, Approaching scalable quantum memory with integrated atomic devices, Appl. Phys. Rev. 11, 031304 (2024).
[90] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Quantum repeaters based on atomic ensembles and linear optics, Rev. Mod. Phys. 83, 33 (2011).
[91] P. van Loock, W. Alt, C. Becher, O. Benson, H. Boche, C. Deppe, J. Eschner, S. Höfling, D. Meschede, P. Michler, F. Schmidt, and H. Weinfurter, Extending Quantum Links: Modules for Fiber- and Memory-Based Quantum Repeaters, Adv. Quantum Technol. 3, 1900141 (2020).
[92] K. Azuma, S. E. Economou, D. Elkouss, P. Hilaire, L. Jiang, H.-K. Lo, and I. Tzitrin, Quantum repeaters: From quantum networks to the quantum internet, Rev. Mod. Phys. 95, 045006 (2023).
[93] M. Razavi, M. Piani, and N. Lütkenhaus, Quantum repeaters with imperfect memories: Cost and scalability, Phys. Rev. A 80, 032301 (2009).
[94] M. K. Bhaskar, R. Riedinger, B. Machielse, D. S. Levonian, C. T. Nguyen, E. N. Knall, H. Park, D. Englund, M. Lončar, D. D. Sukachev, and M. D. Lukin, Experimental demonstration of memory-enhanced quantum communication, Nature 580, 60 (2020).
[95] Y.-F. Pu, S. Zhang, Y.-K. Wu, N. Jiang, W. Chang, C. Li, and L.-M. Duan, Experimental demonstration of memory-enhanced scaling for entanglement connection of quantum repeater segments, Nat. Photonics 15, 374 (2021).
[96] C. Li, S. Zhang, Y.-K. Wu, N. Jiang, Y.-F. Pu, and L.-M. Duan, Multicell Atomic Quantum Memory as a Hardware-Efficient Quantum Repeater Node, PRX Quantum 2, 040307 (2021).
[97] B. Lounis and M. Orrit, Single-photon sources, Rep. Prog. Phys. 68, 1129 (2005).
[98] M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Invited Review Article: Single-photon sources and detectors, Rev. Sci. Instrum. 82, 071101 (2011).
[99] F. Kaneda and P. G. Kwiat, High-efficiency single-photon generation via large-scale active time multiplexing, Sci. Adv. 5, eaaw8586 (2019).
[100] K. B. Dideriksen, R. Schmieg, M. Zugenmaier, and E. S. Polzik, Room-temperature single-photon source with near-millisecond built-in memory, Nat. Commun. 12, 3699 (2021).
[101] S. E. Thomas, L. Wagner, R. Joos, R. Sittig, C. Nawrath, P. Burdekin, I. M. de Buy Wenniger, M. J. Rasiah, T. Huber-Loyola, S. Sagona-Stophel, S. Höfling, M. Jetter, P. Michler, I. A. Walmsley, S. L. Portalupi, and P. M. Ledingham, Deterministic storage and retrieval of telecom light from a quantum dot single-photon source interfaced with an atomic quantum memory, Sci. Adv. 10, eadi7346 (2024).
[102] F. Kaneda, F. Xu, J. Chapman, and P. G. Kwiat, Quantum-memory-assisted multi-photon generation for efficient quantum information processing, Optica 4, 1034 (2017).
[103] R. Chrapkiewicz, M. Dąbrowski, and W. Wasilewski, High-Capacity Angularly Multiplexed Holographic Memory Operating at the Single-Photon Level, Phys. Rev. Lett. 118, 063603 (2017).
[104] E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409, 46 (2001).
[105] G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, A quantum memory intrinsic to single nitrogen–vacancy centres in diamond, Nat. Phys. 7, 789 (2011).
[106] F. Dolde, I. Jakobi, B. Naydenov, N. Zhao, S. Pezzagna, C. Trautmann, J. Meijer, P. Neumann, F. Jelezko, and J. Wrachtrup, Room-temperature entanglement between single defect spins in diamond, Nat. Phys. 9, 139 (2013).
[107] C. E. Bradley, J. Randall, M. H. Abobeih, R. C. Berrevoets, M. J. Degen, M. A. Bakker, M. Markham, D. J. Twitchen, and T. H. Taminiau, A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute, Phys. Rev. X 9, 031045 (2019).
[108] C. E. Bradley, S. W. de Bone, P. F. W. Möller, S. Baier, M. J. Degen, S. J. H. Loenen, H. P. Bartling, M. Markham, D. J. Twitchen, R. Hanson, D. Elkouss, and T. H. Taminiau, Robust quantum-network memory based on spin qubits in isotopically engineered diamond, npj Quantum Inf. 8, 122 (2022).
[109] M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C. Humphreys, R. N. Schouten, R. F. L. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse, S. Wehner, and R. Hanson, Realization of a multinode quantum network of remote solid-state qubits, Science 372, 259 (2021).
[110] D. Chen, N. Zheludev, and W.-b. Gao, Building Blocks for Quantum Network Based on Group-IV Split-Vacancy Centers in Diamond, Adv. Quantum Technol. 3, 1900069 (2020).
[111] D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout, Phys. Rev. Lett. 119, 223602 (2017).
[112] E. Bersin, M. Sutula, Y. Q. Huan, A. Suleymanzade, D. R. Assumpcao, Y.-C. Wei, P.-J. Stas, C. M. Knaut, E. N. Knall, C. Langrock, N. Sinclair, R. Murphy, R. Riedinger, M. Yeh, C.J. Xin, S. Bandyopadhyay, D. D. Sukachev, B. Machielse, D. S. Levonian, M. K. Bhaskar, S. Hamilton, H. Park, M. Lončar, M. M. Fejer, P. B. Dixon, D. R. Englund, and M. D. Lukin, Telecom Networking with a Diamond Quantum Memory, PRX Quantum 5, 010303 (2024).
[113] K. Senkalla, G. Genov, M. H. Metsch, P. Siyushev, and F. Jelezko, Germanium Vacancy in Diamond Quantum Memory Exceeding 20 ms, Phys. Rev. Lett. 132, 026901 (2024).
[114] C.W. Thiel, T. Böttger, and R.L. Cone, Rare-earth-doped materials for applications in quantum information storage and signal processing, J. Lumin. 131, 353 (2011).
[115] P. Goldner, A. Ferrier, and O. Guillot-Noël, Rare Earth-Doped Crystals for Quantum Information Processing, Handb. Phys. Chem. Rare Earths 46, 1 (2015).
[116] Z.-Q. Zhou, C. Liu, C.-F. Li, G.-C. Guo, D. Oblak, M. Lei, A. Faraon, M. Mazzera, and H. de Riedmatten, Photonic Integrated Quantum Memory in Rare-Earth Doped Solids, Laser Photonics Rev. 17, 2300257 (2023).
[117] M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, and H. de Riedmatten, Quantum Storage of a Photonic Polarization Qubit in a Solid, Phys. Rev. Lett. 108, 190504 (2012).
[118] D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündoğan, J. Fekete, M. Mazzera, and H. de Riedmatten, Quantum Storage of Heralded Single Photons in a Praseodymium-Doped Crystal, Phys. Rev. Lett. 112, 040504 (2014).
[119] M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, Solid State Spin-Wave Quantum Memory for Time-Bin Qubits, Phys. Rev. Lett. 114, 230501 (2015).
[120] A. Seri, A. Lenhard, D. Rieländer, M. Gündoğan, P. M. Ledingham, M. Mazzera, and H. de Riedmatten, Quantum Correlations between Single Telecom Photons and a Multimode On-Demand Solid-State Quantum Memory, Phys. Rev. X 7, 021028 (2017).
[121] T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, and G.-C. Guo, Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory, Nat. Commun. 9, 3407 (2018).
[122] A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, Quantum Storage of Frequency-Multiplexed Heralded Single Photons, Phys. Rev. Lett. 123, 080502 (2019).
[123] J. V. Rakonjac, S. Grandi, S. Wengerowsky, D. Lago-Rivera, F. Appas, and H. de Riedmatten, Transmission of light–matter entanglement over a metropolitan network, Optica Quantum 1, 94 (2023).
[124] J. Jin, E. Saglamyurek, M. G. Puigibert, V. Verma, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits, Phys. Rev. Lett. 115, 140501 (2015).
[125] D.-C. Liu, P.-Y. Li, T.-X. Zhu, L. Zheng, J.-Y. Huang, Z.-Q. Zhou, C.-F. Li, and G.- C. Guo, On-Demand Storage of Photonic Qubits at Telecom Wavelengths, Phys. Rev. Lett. 129, 210501 (2022).
[126] C. Laplane, P. Jobez, J. Etesse, N. Timoney, N. Gisin, and M. Afzelius, Multiplexed on-demand storage of polarization qubits in a crystal, New J. Phys. 18, 013006 (2016).
[127] C. Liu, T.-X. Zhu, M.-X. Su, Y.-Z. Ma, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, On-Demand Quantum Storage of Photonic Qubits in an On-Chip Waveguide, Phys. Rev. Lett. 125, 260504 (2020).
[128] A. Ortu, A. Holzäpfel, J. Etesse, and M. Afzelius, Storage of photonic time-bin qubits for up to 20 ms in a rare-earth doped crystal, npj Quantum Inf. 8, 29 (2022).
[129] T.-X. Zhu, C. Liu, M. Jin, M.-X. Su, Y.-P. Liu, W.-J. Li, Y. Ye, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, On-Demand Integrated Quantum Memory for Polarization Qubits, Phys. Rev. Lett. 128, 180501 (2022).
[130] E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, Broadband waveguide quantum memory for entangled photons, Nature 469, 512 (2011).
[131] N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, Spectral Multiplexing for Scalable Quantum Photonics using an Atomic Frequency Comb Quantum Memory and Feed-Forward Control, Phys. Rev. Lett. 113, 053603 (2014).
[132] H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, A solid-state light–matter interface at the single-photon level, Nature 456, 773 (2008).
[133] I. Usmani, M. Afzelius, H. de Riedmatten, and N. Gisin, Mapping multiple photonic qubits into and out of one solid-state atomic ensemble, Nat. Commun. 1, 12 (2010).
[134] C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, Quantum storage of photonic entanglement in a crystal, Nature 469, 508 (2011).
[135] I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, and N. Gisin, Heralded quantum entanglement between two crystals, Nat. Photonics 6, 234 (2012).
[136] C. Clausen, F. Bussières, M. Afzelius, and N. Gisin, Quantum Storage of Heralded Polarization Qubits in Birefringent and Anisotropically Absorbing Materials, Phys. Rev. Lett. 108, 190503 (2012).
[137] Z.-Q. Zhou, W.-B. Lin, M. Yang, C.-F. Li, and G.-C. Guo, Realization of Reliable Solid-State Quantum Memory for Photonic Polarization Qubit, Phys. Rev. Lett. 108, 190505 (2012).
[138] F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory, Nat. Photonics 8, 775 (2014).
[139] T. Zhong, J. M. Kindem, J. Rochman, and A. Faraon, Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles, Nat. Commun. 8, 14107 (2017).
[140] T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, Nanophotonic rare-earth quantum memory with optically controlled retrieval, Science 357, 1392 (2017).
[141] L. Gaudreau, A. Bogan, M. Korkusinski, S. Studenikin, D. G. Austing, and A. S. Sachrajda, Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits, Semicond. Sci. Technol. 32, 093001 (2017).
[142] A. Boyer de la Giroday, A. J. Bennett, M. A. Pooley, R. M. Stevenson, N. Sköld, R. B. Patel, I. Farrer, D. A. Ritchie, and A. J. Shields, All-electrical coherent control of the exciton states in a single quantum dot, Phys. Rev. B 82, 241301(R) (2010).
[143] A. Boyer de la Giroday, N. Sköld, R. M. Stevenson, I. Farrer, D. A. Ritchie, and A. J. Shields, Exciton-Spin Memory with a Semiconductor Quantum Dot Molecule, Phys. Rev. Lett. 106, 216802 (2011).
[144] A. Delteil, Z. Sun, S. Fält, and A. Imamoğlu, Realization of a Cascaded Quantum System: Heralded Absorption of a Single Photon Qubit by a Single-Electron Charged Quantum Dot, Phys. Rev. Lett. 118, 177401 (2017).
[145] A. Reiserer and G. Rempe, Cavity-based quantum networks with single atoms and optical photons, Rev. Mod. Phys. 87, 1379 (2015).
[146] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, An elementary quantum network of single atoms in optical cavities, Nature 484, 195 (2012).
[147] C. Nölleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, Efficient Teleportation Between Remote Single-Atom Quantum Memories, Phys. Rev. Lett. 110, 140403 (2013).
[148] N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, Heralded Storage of a Photonic Quantum Bit in a Single Atom, Phys. Rev. Lett. 114, 220501 (2015).
[149] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Quantum interface between light and atomic ensembles, Rev. Mod. Phys. 82, 1041 (2010).
[150] K. Shinbrough, D. R. Pearson Jr., B. Fang, E. A. Goldschmidt, and V. O. Lorenz, Broadband quantum memory in atomic ensembles, Adv. At., Mol., Opt. Phys. 72, 297 (2023).
[151] B. Jing, X.-H. Bao, Chapter 17: Ensemble-Based Quantum Memory: Principle, Advance, and Application, Photonic Quantum Technologies: Science and Applications, M. Benyoucef (Wiley-VCH, Weinheim, 2023), Vols. 1-2, p. 433.
[152] M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, Unconditional room-temperature quantum memory, Nat. Phys. 7, 794 (2011).
[153] L. Ma, X. Lei, J. Yan, R. Li, T. Chai, Z. Yan, X. Jia, C. Xie, and K. Peng, High-performance cavity-enhanced quantum memory with warm atomic cell, Nat. Commun. 13, 2368 (2022).
[154] S.E. Thomas, S. Sagona-Stophel, Z. Schofield, I.A. Walmsley, and P.M. Ledingham, Single-Photon-Compatible Telecommunications-Band Quantum Memory in a Hot Atomic Gas, Phys. Rev. Appl. 19, L031005 (2023).
[155] C. Wang, Y. Yu, Y. Chen, M. Cao, J. Wang, X. Yang, S. Qiu, D. Wei, H. Gao, and F. Li, Efficient quantum memory of orbital angular momentum qubits in cold atoms, Quantum Sci. Technol. 6, 045008 (2021).
[156] M.-X. Dong, W.-H. Zhang, L. Zeng, Y.-H. Ye, D.-C. Li, G.-C. Guo, D.-S. Ding, and B.-S. Shi, Highly Efficient Storage of 25-Dimensional Photonic Qudit in a Cold-Atom-Based Quantum Memory, Phys. Rev. Lett. 131, 240801 (2023).
[157] Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency, Phys. Rev. Lett. 120, 183602 (2018).
[158] M. Fleischhauer and M. D. Lukin, Dark-State Polaritons in Electromagnetically Induced Transparency, Phys. Rev. Lett. 84, 5094 (2000).
[159] M. Fleischhauer and M. D. Lukin, Quantum memory for photons: Dark-state polaritons, Phys. Rev. A 65, 022314 (2002).
[160] C. Mewes and M. Fleischhauer, Two-photon linewidth of light “stopping"via electromagnetically induced transparency, Phys. Rev. A 66, 033820 (2002).
[161] C. Mewes and M. Fleischhauer, Decoherence in collective quantum memories for photons, Phys. Rev. A 72, 022327 (2005).
[162] S. D. Jenkins, D. N. Matsukevich, T. Chanelière, A. Kuzmich, and T. A. B. Kennedy, Theory of dark-state polariton collapses and revivals, Phys. Rev. A 73, 021803(R)(2006).
[163] Y. D. Chong and M. Soljačić, Dark-state polaritons in single- and double-Λ media, Phys. Rev. A 77, 013823 (2008).
[164] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).
[165] J. C. Garrison and R. Y. Chiao, Quantum Optics (Oxford University Press, New York, 2008).
[166] B. D. Bartolo and O. Forte, Advances in Spectroscopy for Lasers and Sensing (Springer, Dordrecht, 2006).
[167] W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math. 7, 649 (1954).
[168] S. Blanes, F. Casas, J. A. Oteo, and J. Ros, The Magnus expansion and some of its applications, Phys. Rep. 470, 151 (2009).
[169] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert W function, Adv. Comput. Math 5, 329 (1996).
[170] S. Klarsfeld and J. A. Oteo, Recursive generation of higher-order terms in the Magnus expansion, Phys. Rev. A 39, 3270 (1989).
[171] W. H. Louisell, Quantum statistical properties of radiation (John Wiley and Sons. Inc., New York, 1973), p. 158.
[172] D. A. Steck, Rubidium 87 D Line Data, available online at http://steck.us/alkalidata (revision 2.2.2, 9 July 2021).
[173] J. E. Sansonetti, Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Rubidium, J. Phys. Chem. Ref. Data 35, 301 (2006).
[174] H. S. Moon, L. Lee and J. B. Kim, Double-resonance optical pumping of Rb atoms, J. Opt. Soc. Am. B 24, 2157 (2007).
[175] W.-K. Lee and H. S. Moon, Measurement of absolute frequencies and hyperfine structure constants of 4D5/2 and 4D3/2 levels of 87Rb and 85Rb using an optical frequency comb, Phys. Rev. A 92, 012501 (2015).
[176] E. de Clercq, M. de Labachellerie, G. Avila, P. Cerez, and M. Tetu, Laser diode optically pumped caesium beam, J. Phys. (Paris) 45, 239 (1984).
[177] J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (IOP Publishing Ltd., Bristol, 1989), Vol. 1.
[178] D. A. Steck, Quantum and Atom Optics, available online at http://steck.us/teaching (revision 0.8.3, 25 May 2012).
[179] D. M. Brink and G. R. Satchler, Angular Momentum (Oxford University Press, London, 1968), 2nd edition.
[180] E. Balcar and S. W. Lovesey, Introduction to the Graphical Theory of Angular Momentum: Case Studies, Springer Tracts in Modern Physics Vol. 234 (Springer, Berlin, 2009).
[181] B. Arora and B. K. Sahoo, State-insensitive trapping of Rb atoms: Linearly versus circularly polarized light, Phys. Rev. A 86, 033416 (2012).
[182] N. Šibalić, J. D. Pritchard, C. S. Adams, and K. J. Weatherill, ARC: An open-source library for calculating properties of alkali Rydberg atoms, Comput. Phys. Commun. 220, 319 (2017).
[183] T.-G. Zhang, Y.-F. Wang, X.-R. Zang, W. Zhuang, and J.-B. Chen, Active optical clock based on four-level quantum system, Sci. Bull. 58, 2033 (2013).
[184] F. Blatt, T. Halfmann, and T. Peters, One-dimensional ultracold medium of extreme optical depth, Opt. Lett. 39, 446 (2014).
[185] Y.-F. Hsiao, H.-S. Chen, P.-J. Tsai, and Y.-C. Chen, Cold atomic media with ultrahigh optical depths, Phys. Rev. A 90, 055401 (2014).
[186] K. T. Kaczmarek, D. J. Saunders, M. R. Sprague, W. S. Kolthammer, A. Feizpour, P. M. Ledingham, B. Brecht, E. Poem, I. A. Walmsley, and J. Nunn, Ultrahigh and persistent optical depths of cesium in Kagomé-type hollow-core photonic crystal fibers, Opt. Lett. 40, 5582 (2015).
[187] C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University Press, New York, 2004).
[188] G. S. Agarwal, Quantum Optics (Cambridge University Press, New York, 2013).
[189] E. Lombardi, F. Sciarrino, S. Popescu, and F. De Martini, Teleportation of a Vacuum-One-Photon Qubit, Phys. Rev. Lett. 88, 070402 (2002).
[190] S. Giacomini, F. Sciarrino, E. Lombardi, and F. De Martini, Active teleportation of a quantum bit, Phys. Rev. A 66, 030302(R) (2002).
[191] A. P. Lund and T. C. Ralph, Nondeterministic gates for photonic single-rail quantum logic, Phys. Rev. A 66, 032307 (2002).
[192] L.-A. Wu, P. Walther, and D. A. Lidar, No-go theorem for passive single-rail linear optical quantum computing, Sci. Rep. 3, 1394 (2013).
[193] P. Zoller, Th. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J. I. Cirac, D. Deutsch, J. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere, M. Grassl, S. Haroche, A. Imamoglu, A. Karlson, J. Kempe, L. Kouwenhoven, S. Kröll, G. Leuchs, M. Lewenstein, D. Loss, N. Lütkenhaus, S. Massar, J. E. Mooij, M. B. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko, D. Suter, J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup, and A. Zeilinger, Quantum information processing and communication, Eur. Phys. J. D 36, 203 (2005).
[194] D. Drahi, D. V. Sychev, K. K. Pirov, E. A. Sazhina, V. A. Novikov, I. A. Walmsley, and A. I. Lvovsky, Entangled resource for interfacing single- and dual-rail optical qubits, Quantum 5, 416 (2021).
[195] C. Schaeff, R. Polster, R. Lapkiewicz, R. Fickler, S. Ramelow, and A. Zeilinger, Scalable fiber integrated source for higher-dimensional path-entangled photonic quNits, Opt. Express 20, 16145 (2012).
[196] B. D. Lio, D. Cozzolino, N. Biagi, Y. Ding, K. Rottwitt, A. Zavatta, D. Bacco, and L. K. Oxenløwe, Path-encoded high-dimensional quantum communication over a 2-km multicore fiber, npj Quantum Inf. 7, 63 (2021).
[197] J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, Universal linear optics, Science 349, 711 (2015).
[198] B. Bartlett and S. Fan, Universal programmable photonic architecture for quantum information processing, Phys. Rev. A 101, 042319 (2020).
[199] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, New High-Intensity Source of Polarization-Entangled Photon Pairs, Phys. Rev. Lett. 75, 4337 (1995).
[200] A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, Integrated photonic quantum gates for polarization qubits, Nat. Commun. 2, 566 (2011).
[201] J. Zeuner, A. N. Sharma, M. Tillmann, R. Heilmann, M. Gräfe, A. Moqanaki, A. Szameit, and P. Walther, Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits, npj Quantum Inf. 4, 13 (2018).
[202] Z. Y. Ou, C. K. Hong, and L. Mandel, Relation between input and output states for a beam splitter, Opt. Commun. 63, 118 (1987).
[203] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).
[204] J. S. Bell, On the Einstein Podolsky Rosen paradox, Phys. Phys. Fiz. 1, 195 (1964).
[205] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed Experiment to Test Local Hidden-Variable Theories, Phys. Rev. Lett. 23, 880 (1969).
[206] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev. 47, 777 (1935).
[207] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, Nature 526, 682 (2015).
[208] K. B. Wharton and N. Argaman, Colloquium: Bell's theorem and locally mediated reformulations of quantum mechanics, Rev. Mod. Phys. 92, 021002 (2020).
[209] M. Gaudin, Une démonstration simplifiée du théorème de wick en mécanique statistique, Nucl. Phys. 15, 89 (1960).
[210] M. Fleischhauer and A. S. Manka, Propagation of laser pulses and coherent population transfer in dissipative three-level systems: An adiabatic dressed-state picture, Phys. Rev. A 54, 794 (1996).
[211] S. E. Harris and L. V. Hau, Nonlinear Optics at Low Light Levels, Phys. Rev. Lett. 82, 4611 (1999).
[212] M. D. Lukin and A. Imamoğlu, Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons, Phys. Rev. Lett. 84, 1419 (2000).
[213] K. Banaszek and K. Wódkiewicz, Testing Quantum Nonlocality in Phase Space, Phys. Rev. Lett. 82, 2009 (1999).
[214] C. F. Wildfeuer, A. P. Lund, and J. P. Dowling, Strong violations of Bell-type inequalities for path-entangled number states, Phys. Rev. A 76, 052101 (2007).
[215] C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin and Heidelberg, 1991).
[216] H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin and Heidelberg, 1996), 2nd edition.
[217] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer-Verlag, Berlin and Heidelberg, 2004), 3rd edition.
[218] L. Davidovich, Sub-Poissonian processes in quantum optics, Rev. Mod. Phys. 68, 127 (1996).
[219] M. Lax, Quantum Noise. IV. Quantum Theory of Noise Sources, Phys. Rev. 145, 110 (1966).
[220] H. Haken, Laser Theory (Springer-Verlag, Berlin and Heidelberg, 1984).
[221] C. Schmid and H. Risken, The Fokker-Planck equation for quantum noise of the N-level system, Z. Phys. 189, 365 (1966).
[222] H. Haken, H. Risken, and W. Weidlich, Quantum mechanical solutions of the laser masterequation: III. Exact equation for a distribution function of macroscopic variables, Z. Phys. 206, 355 (1967).
[223] J. P. Gordon, Quantum Theory of a Simple Maser Oscillator, Phys. Rev. 161, 367 (1967).