| 研究生: |
蔡翔威 Tsai, Shiang-Wei |
|---|---|
| 論文名稱: |
鈦-鉬合金在漢克溶液中的腐蝕疲勞行為研究 Study of Corrosion Fatigue Behavior of Ti-Mo Alloys in Hanks’Solution |
| 指導教授: |
陳瑾惠
Chern, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 鈦-鉬合金 、腐蝕疲勞 、漢克溶液 |
| 外文關鍵詞: | Ti-Mo alloys, corrosion fatigue, Hanks’solution |
| 相關次數: | 點閱:133 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗的目的最主要是比較鑄造Ti-6wt%Al-4 wt%V、Ti-7.5wt%Mo
、Ti-15wt%Mo-1wt%Bi在空氣中和在漢克溶液中的高週期疲勞行為。其結果顯示在這兩種不同的環境中,這三種合金疲勞S-N曲線趨勢是相似的,疲勞強度也是類似的,漢克溶液不會對這三種合金在疲勞性質上有任何影響。
接著將Ti-15wt%Mo-1wt%Bi在室溫滾壓至1.2mm厚,再經由固溶T1 t1,時效T2 t2,以期改善拉伸性質和疲勞性質。結果顯示,經由一連串的加工、熱機處理製程的Ti-15Mo-1Bi,其拉伸強度和疲勞強度比直接鑄造的Ti-15wt%Mo-1wt%Bi要好。
The purpose of this study is mainly to compare the high-cycle fatigue behavior of as-cast Ti-6wt%Al-4wt%V、Ti-7.5wt%Mo、Ti-15 wt%Mo-1wt%Bi in air and in Hanks' solution. The conclusion expresses that in these two different environments, the tendency of fatigue S-N curves of these three alloys are similar, and the fatigue strength of these three alloys are the analogous,and the Hanks' solution does not influence on fatigue property of these three alloys.
The Ti-15wt%Mo-1wt%Bi are rolled to the thickness of 1.2mm at room temperature , and solution-treated T1 for t1, and aged T2 for t2.This study is to expect for improving on the tensile property and the fatigue property. The result shows that the Ti-15wt%Mo-1wt%Bi are worked and thermomechinal-treated,the tensile strength and the fatigue strength are better than as-cast Ti-15wt%Mo-1wt% Bi.
B. Gunawarman, Mitsuo Niinomia, Toshikazu Akahoria,
Junichi Takedaa, Hiroyuki Todaa, Mechanical properties of Ti–4.5Al–3V–2Mo–2Fe and possibility for healthcare applications, Materials Science and Engineering C25,
296~303, 2005.
C.A.R.P. Baptista, S.G. Schneider, E.B. Taddei, H.M. da Silva, Fatigue behavior of arc melted Ti-13Nb-13Zr alloy, Internation Journal of Fatigue, 26, 967~973, 2004.
C.R. Brooks, Ashok Choudhury, Metallurgical Failure Analysis, McGraw-Hill, Inc., USA, 157~177, 1993.
C.R. Brook, A.Choudhury, Fracture mechanism and micro-fractographic features. In: Brook CR, Choudhury A. editors. Metallurgical failure analysis Chap.3, McGraw-Hill, New York, 1993.
C. Sarrazin-Baudoux, Modelling of fatigue-corrosion in Ti6246 alloy at 500℃, Fatigue Fract Engng Mater Struct, 28, 1161~1168, 2005.
C.S. Shin, M.C. Fivel, M. Verdier, C. Robertson, Dislocation dynamics simulations of fatigue of precipitation-hardened materials, Materials Science and Engineering A, 400–401, 166~169, 2005.
C.W. Lin, C.P. Ju, J.H. Chen Lin, A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium and Ti-6Al-4V and Ti-13Nb-13Zr alloys, Biomaterials, 26, 2899~2907, 2005.
D. Eliezer, E. Tal-Gutelmacher, C.E. Cross, Th. Boellinghaus, Hydrogen absorption and desorption in a duplex-annealed Ti–6Al–4V alloy during exposure to different hydrogen containing environments, Materials Science and Engineering A433, 298~304, 2006.
D.P. Perl, A.R.Brody, Alzeihmers’disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons, Science, 208, 297~299, 1980.
D. Eylon, B. Strope, Fatigue crack initiation in Ti-6wt%Al-4wt%V casting, J Mater Sci, 14, 117~123, 1979.
E. Eisenbarth, D. Velten , M. Muller, R. Thull, J. Breme, Biocompatibility of b-stabilizing elements of titanium alloys, Biomaterials, 25, 5705–5713, 2004.
E.K. Molchanova, Phase Diagram fo titanium alloys[transl. of Atlas diagram sostoyaniya titanovyk splavov], Israel program for scientific translation, Jerusalem, 1965.
E.U. Lee, A.K. Vasudevanb, K. Sadananda, Effects of various environments on fatigue crack growth in Laser formed and IM Ti–6Al–4V alloys, International Journal of Fatigue, 27, 1597~1607, 2005.
E.W. Collings, Physical Metallurgy of Titanium Alloys. The Physical Metallurgy of Titanium Alloys, USA, 1988.
F. Sansoz, H. Ghonem, Effect of loading frequency on fatigue crack growth mechanism in α/β Ti microstructure with large colony size, Materials Science and Engineering A356, 81~92, 2003.
H. Yamada, Strength of biological materials, Williams and Wilkins, Baltimore, 1970.
J. Black, Biological Performance of Materials, Fundamentals of Biocompatibility 2nd, Marcel Dekker, 1992.
J.L. Murray, L.H. Bennett, H. Baker, Binary Phase Diagram, American Society for Metals, USA, 1986.
K. NAKASA, H. SATOH, THE EFFECT OF HYDROGEN-CHARGING ON THE FATIGUE CRACK PROPAGATION BEHAVIOR OF β-TITANIUM ALLOYS, Corrosion Science, 38, No.3, 457~468, 1996.
K.S. Katti, Biomaterials in total joint replacement, Colloids and Surface B:Biointerfaces, 39, 133~142, 2004.
Lewis C.Lietch, Hyukjae Lee, Shankar Mall, Fretting fatigue behavior of Ti–6Al–4V under seawater environment, Materials Science and Engineering A403, 281~289, 2005.
Leinenbach Christian, Schwilling Berthold, Eifler Dietmar, Cyclic deformation behaviour and fatigue induced surface damage oftitanium alloys in simulated physiological media,Materials Science and Engineering C25, 321~329, 2005.
L. Probster, W. Lin, Huttemmann H, Effect of fluoride prophylactic agents on titanium surfaces, Int J Oral Maxillofac Implants , 6,50~54, 1991.
Leinenbach Christian, Eifler Dietmar, Fatigue and cyclic deformation behaviour of surface-modified titanium
alloys in simulated physiological media, Biomaterials, 27, 1200~1208, 2006.
L. Reclaru, J.M. Meyer, Effect of fluoride on titanium and other dental alloys in dentistry, Biomaterial, 19, 85~92, 1998.
M.G. Fontana, Corrosion Engineering 3rd ed., McGraw-Hill Book Company, New York, P.493, 1996.
M. Long, M. Crooks, H.J Rack., High-cycle fatigue performance of solution-treated metastable-β titanium alloys, Acta Mater 47,661~669, 1999.
M. Long, J.H. Rack, Titanium alloys in total joint replacement-α materials science perspective, Biomaterial, 19, 1621~1639, 1998.
M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering A, 243,231~236, 1998.
M. Niinomi, Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr, Biomaterial, 24, 2673~2683, 2003.
Mitsuo Niinomi, Akira Saga, Kei-ichi Fukunaga, Long crack growth behavior of implant material Ti–5Al–2.5Fe in air and simulated body environment related to microstructure, International Journal of Fatigue, 22, 887~897, 2000.
Mitsuo Niinomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods, Science and Technology of Advanced Materials, 4, 445~454, 2004.
M.J. Couper, A.E. Neeson, J.R. Griffiths, Casting defects and fatigue life of an aluminum casting alloy, Fatigue Fract Eng Mater Struct, 13, 213~220, 1990.
M. Papakyriacou, H. Mayer, C. Pypen, H. Plenk Jr, S. Stanzl-Tschegg, Effects of surface treatments on high cycle corrosion fatigue of metallic implant materials, International Journal of Fatigue , 22, 873~886, 2000.
M. Shimojo, Peculiar effects of inert gases on fatigue crack growth in an (α+β)-titanium alloy, Materials Science and Engineering A354, 24~30, 2003.
P.C. McAfee, I.D. Farey, C.E. Sutterlin, K.R. Gurr, K.E. Warden, B.W. Cunningham, The effect of spinal implant rigidity on vertebral bone density: a canine model.Spine, 16, S190~197, 1991.
P.J. Bania, Beat titanium alloy and their role in the titanium industry. In:Eylon D, Boyer R, Koss D, editors. Beta titanium alloys in the 1990/s. Warrendale, PA:TMS, p.3~14, 1993.
R. Filip, K. Kubiak, W. Ziaja, J. Sieniawski, The effect of microstructure on the mechanical properties of two-phase titanium alloys, J Mater Process Technol., 133, 87~89, 2003.
R. EBARA, Long-term corrosion fatigue behaviour of structural material, Fatigue Fract Engng Mater Struct, 25,855~859, 2002.
R. Davis, Flower HM, West DRF, Martensitic transformations in Ti-Mo alloys, J Mater Sci, 14, 712~722, 1979.
Ricardo A.Zavanelli, E. Guilherme, Pessanha Henriques, Itamar Ferreira, João M. D. de Almeida Rollo, Corrosion-fatigue life of commercially pure titanium and Ti-6Al-4V alloys in different
storage environments, THE JOURNAL OF PROSTHETIC DENTISTRY, 84, 274~279, 2000.
Robert E.Reed-Hill, Reza Abbaschian, Physical Metallurgy Principles 3rd, 1991.
R.M. Brick, A.W. Pense, R.B. Gordon, Structure and properties of engineering meterials, McGraw Hill, New Youk, 415~457, 1977.
S. Sakaguchi, K. Nakahara, Y. Hayashi, Metals Mater.Int., 2(5), 193, 1999.
T. Ahmed, H.J. Rack, Low modulus biocompatible titanium base alloys for medical devices, US Patent NO.5871595, 1999.
T.C. Oliveira Nilson, Aleixo Giorgia, Caram Rubens, C. Guastaldi Antonio, Development of Ti-Mo alloys for biomedical applications:Microstructure and electrochemical character-
-ization, Materials Science and Engineering, A 452-453, 727~731, 2007.
W.F. Ho, C.P. Ju, J.H. Chen Lin, Structure and properties of cast binary Ti-Mo alloys, Biomaterials, 20, 2115~2122, 1999.
William D.Callister,JR., Materials Science and Engineering and Introduction 5th , 1999.
XIULIN ZHENG, RONG WANG, ON THE CORROSION FATIGUE CRACK INITIATION
MODEL AND EXPRESSION OF METALLIC NOTCHED ELEMENTS, Engineering Fracture Mechanics, 57, No.6, 617~624, 1991.
Y.L. Zhou, M. Niinomi, T. Akahori, Decomposition of martensite α”during aging treatment and resulting mechanical properties of Ti-Ta alloy, Materials Science and Engineering A, 371, 283~290, 2004.
賴耿陽, 金屬鈦理論與應用, 復漢出版社, 1990.
李智銘, 鑄造鈦合金氧化及腐蝕性質研究, 成功大學材料工程研究所碩士論文, 1995.
莊政和, 鈦-鉬合金熱處理後機械性質之研究, 成功大學材料工程研究所碩士論文, 2004.
林家緯, 鑄造鈦-鉬合金疲勞性質研究, 成功大學材料工程研究所博士論文, 2005.
簡嘉毅, 鈦-鉬合金熱處理後拉伸疲勞性質研究, 成功大學材料工程研究所碩士論文, 2005.
林群堡, 熱處理對鈦-鉬合金機械性質的影響, 成功大學材料工程研究所碩士論文, 2006.
校內:2106-07-26公開