| 研究生: |
張彧瑋 Zhang, Yu-Wei |
|---|---|
| 論文名稱: |
二維鈣鈦礦(PEA)2PbBr4激子極化子光學特性之研究 Fundamental Optical Characteristics of Exciton-Polaritons in Two-Dimensional (PEA)2PbBr4 Halide Perovskites |
| 指導教授: |
徐旭政
Hsu, Hsu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 二維鈣鈦礦薄膜 、激子極化子 、角度分辨光致發光光譜 、色散關係 |
| 外文關鍵詞: | two-dimensional (2D) perovskites, exciton-polariton, angle-resolved photoluminescence (ARPL), dispersion relation |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鹵化鉛鈣鈦礦在太陽能電池、LED與雷射等光電相關元件已有多年的亮眼表現,然而近年來二維鈣鈦礦在此領域中吸引許多研究人員的興趣,歸功於對水氣與溫度的忍受程度優於三維鈣鈦礦。其材料受激發產生的激子與光子所形成的半光半物質準粒子,稱為激子-極化子(exciton-polariton),亦簡稱作極化子 (polariton)。其中最讓人關注的特性之一,就是此材料具備玻色愛因斯坦凝聚態的潛力,
自組織的二維(2D) 有機-無機鈣鈦礦薄膜被合成用於激子極化子研究。由於材料具有天然多重量子阱結構,和受限在無基層中的激子產生較大的激子束縛能,使我們得以在室溫下研究激子與光子強耦合成極化子。本文中,我們先對此二維鈣鈦礦材料進行基本的光學特性分析,其次藉由空間角度解析光致發光測量,證明二維有機-無機鈣鈦礦半導體嵌入平面微腔後,促成光與物質的強耦合機制。從拉比分裂能 (Ω) 與極化子的波矢(E-k)色散關係耦合約為 362 meV。藉由研究層狀二維鈣鈦礦的激子極化子特性,將有助未來此極化子元件的設計條件。
Lead halide perovskites have been used in photonic devices such as solar cells, LEDs, and lasers for many years due to their outstanding properties. However, in recent years, two-dimensional (2D) perovskites have attracted the interest of many researchers in this field. Its outstanding temperature and moisture stability comparing to three dimensional perovskites is the key. Photoinduced excitons combine with photons form the quasi-particles in perovskites which were named exciton-polaritons. One of the most interesting features is the potential to achieve the Bose-Einstein condensation in this material.
Self-organized 2D organic-inorganic perovskite films are synthesized in this work. Due to multiple quantum-well structure in nature and excitons confined in the inorganic layer, the exciton binding energy is enhanced. Hence, we can investigate the behavior of excitons and photons in a strong coupling regime at room temperature. Here we analyze the fundamental optical properties of this 2D perovskite material. Then, we utilize the angle-resolved photoluminescence measurements to prove a strong coupling mechanism while the 2D organic-inorganic perovskite is embedded inside the microcavity. The Rabi splitting energy (Ω) evaluated from the energy-wavevector dispersion (E-k dispersion) of polaritons is up to 362 meV. The investigations of polariton in layered 2D perovskite benefit the engineering of this polariton devices in the future.
1 David P McMeekin, Golnaz Sadoughi, Waqaas Rehman, Giles E Eperon, Michael Saliba, Maximilian T Hörantner, Amir Haghighirad, Nobuya Sakai, Lars Korte, and Bernd Rech, Science 351 (6269), 151 (2016).
2 Bing Tang, Hongxing Dong, Liaoxin Sun, Weihao Zheng, Qi Wang, Fangfang Sun, Xiongwei Jiang, Anlian Pan, and Long Zhang, ACS nano 11 (11), 10681 (2017).
3 Qingfeng Dong, Yanjun Fang, Yuchuan Shao, Padhraic Mulligan, Jie Qiu, Lei Cao, and Jinsong Huang, Science 347 (6225), 967 (2015).
4 Yuan Huang, Liang Li, Zonghao Liu, Haoyang Jiao, Yuqing He, Xiaoge Wang, Rui Zhu, Dong Wang, Junliang Sun, and Qi Chen, Journal of Materials Chemistry A 5 (18), 8537 (2017).
5 Eran Edri, Saar Kirmayer, David Cahen, and Gary Hodes, The Journal of Physical Chemistry Letters 4 (6), 897 (2013).
6 Mingzhen Liu, Michael B Johnston, and Henry J Snaith, Nature 501 (7467), 395 (2013).
7 Yichuan Ling, Zhao Yuan, Yu Tian, Xi Wang, Jamie C Wang, Yan Xin, Kenneth Hanson, Biwu Ma, and Hanwei Gao, Advanced materials 28 (2), 305 (2016).
8 Yanjun Fang, Qingfeng Dong, Yuchuan Shao, Yongbo Yuan, and Jinsong Huang, Nature Photonics 9 (10), 679 (2015).
9 Sergii Yakunin, Mykhailo Sytnyk, Dominik Kriegner, Shreetu Shrestha, Moses Richter, Gebhard J Matt, Hamed Azimi, Christoph J Brabec, Julian Stangl, and Maksym V Kovalenko, Nature photonics 9 (7), 444 (2015).
10 Qing Zhang, Son Tung Ha, Xinfeng Liu, Tze Chien Sum, and Qihua Xiong, Nano letters 14 (10), 5995 (2014).
11 Jun Xing, Xin Feng Liu, Qing Zhang, Son Tung Ha, Yan Wen Yuan, Chao Shen, Tze Chien Sum, and Qihua Xiong, Nano letters 15 (7), 4571 (2015).
12 Yixin Zhao and Kai Zhu, Chemical Society Reviews 45 (3), 655 (2016).
13 Jia‐Wen Xiao, Lang Liu, Deliang Zhang, Nicholas De Marco, Jin‐Wook Lee, Oliver Lin, Qi Chen, and Yang Yang, Advanced Energy Materials 7 (20), 1700491 (2017).
14 Shuai Zhang, Qiuyu Shang, Wenna Du, Jia Shi, Zhiyong Wu, Yang Mi, Jie Chen, Fengjing Liu, Yuanzheng Li, and Mei Liu, Advanced Optical Materials 6 (2), 1701032 (2018).
15 Jian Zhang, Xiaokun Yang, Hui Deng, Keke Qiao, Umar Farooq, Muhammad Ishaq, Fei Yi, Huan Liu, Jiang Tang, and Haisheng Song, Nano-micro letters 9 (3), 1 (2017).
16 Qi Chen, Nicholas De Marco, Yang Michael Yang, Tze-Bin Song, Chun-Chao Chen, Hongxiang Zhao, Ziruo Hong, Huanping Zhou, and Yang Yang, Nano Today 10 (3), 355 (2015).
17 Margarita García-Hernández, Geneviève Chadeyron, Damien Boyer, Antonieta García-Murillo, Felipe Carrillo-Romo, and Rachid Mahiou, Nano-Micro Letters 5 (1), 57 (2013).
18 Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka, Journal of the American Chemical Society 131 (17), 6050 (2009).
19 Ming‐Hsien Li, Hung‐Hsiang Yeh, Yu‐Hsien Chiang, U‐Ser Jeng, Chun‐Jen Su, Hung‐Wei Shiu, Yao‐Jane Hsu, Nobuhiro Kosugi, Takuji Ohigashi, Yu‐An Chen, Po-Shen Shen, Peter Chen, and Tzung-Fang Guo, Advanced Materials 30 (30), 1801401 (2018).
20 SN Ruddlesden and P Popper, Acta Crystallographica 10 (8), 538 (1957).
21 SN Ruddlesden and P Popper, Acta Crystallographica 11 (1), 54 (1958).
22 Hsinhan Tsai, Wanyi Nie, Jean-Christophe Blancon, Constantinos C Stoumpos, Reza Asadpour, Boris Harutyunyan, Amanda J Neukirch, Rafael Verduzco, Jared J Crochet, and Sergei Tretiak, Nature 536 (7616), 312 (2016).
23 Ian C. Smith, Eric T. Hoke, Diego Solis-Ibarra, Michael D. McGehee, and Hemamala I. Karunadasa, Angewandte Chemie International Edition 53 (42), 11232 (2014).
24 Duyen H. Cao, Constantinos C. Stoumpos, Omar K. Farha, Joseph T. Hupp, and Mercouri G. Kanatzidis, Journal of the American Chemical Society 137 (24), 7843 (2015).
25 Michele Saba, Francesco Quochi, Andrea Mura, and Giovanni Bongiovanni, Accounts of Chemical Research 49 (1), 166 (2016).
26 J-C Blancon, Andreas V Stier, Hsinhan Tsai, Wanyi Nie, Costas C Stoumpos, Boubacar Traore, L Pedesseau, Mikael Kepenekian, Fumiya Katsutani, and GT Noe, Nature communications 9 (1), 1 (2018).
27 Kendall B Davis, M-O Mewes, Michael R Andrews, Nicolaas J van Druten, Dallin S Durfee, DM Kurn, and Wolfgang Ketterle, Physical review letters 75 (22), 3969 (1995).
28 Claude Weisbuch, Mr Nishioka, A Ishikawa, and Y Arakawa, Physical Review Letters 69 (23), 3314 (1992).
29 Jacek Kasprzak, Murielle Richard, S Kundermann, A Baas, P Jeambrun, Jonathan Mark James Keeling, FM Marchetti, MH Szymańska, R André, and JL Staehli, Nature 443 (7110), 409 (2006).
30 K Łempicka, M Furman, M Muszyński, M Król, A Wincukiewicz, K Rechcińska, R Mazur, W Piecek, M Kamińska, and J Szczytko, presented at the Laser Science and Technology, 2019 (unpublished).
31 A Fieramosca, L Polimeno, V Ardizzone, L De Marco, M Pugliese, V Maiorano, M De Giorgi, L Dominici, G Gigli, and D Gerace, Science advances 5 (5), eaav9967 (2019).
32 Xiaoli Zhang, Huafeng Shi, Haitao Dai, Xinhai Zhang, Xiao Wei Sun, and Zhaoyu Zhang, ACS applied materials & interfaces 12 (4), 5081 (2020).
33 Jacky Even, Laurent Pedesseau, and Claudine Katan, ChemPhysChem 15 (17), 3733 (2014).
34 Ossila, Ossila (2015).
35 Yunxia Zhang, Yucheng Liu, Zhuo Xu, Haochen Ye, Qingxian Li, Mingxin Hu, Zhou Yang, and Shengzhong Frank Liu, Journal of Materials Chemistry C 7 (6), 1584 (2019).
36 X Hong, T Ishihara, and AV Nurmikko, Physical Review B 45 (12), 6961 (1992).
37 T Umebayashi, K Asai, T Kondo, and A Nakao, Physical Review B 67 (15), 155405 (2003).
38 Thomas M Brenner, David A Egger, Leeor Kronik, Gary Hodes, and David Cahen, Nature Reviews Materials 1 (1), 1 (2016).
39 Zhao Yuan, Yu Shu, Yu Tian, Yan Xin, and Biwu Ma, Chemical Communications 51 (91), 16385 (2015).
40 DB Mitzi, S Wang, CA Feild, CA Chess, and AM Guloy, Science 267 (5203), 1473 (1995).
41 Naoki Kawano, Masanori Koshimizu, Yan Sun, Natsuna Yahaba, Yutaka Fujimoto, Takayuki Yanagida, and Keisuke Asai, The Journal of Physical Chemistry C 118 (17), 9101 (2014).
42 Letian Dou, Andrew B Wong, Yi Yu, Minliang Lai, Nikolay Kornienko, Samuel W Eaton, Anthony Fu, Connor G Bischak, Jie Ma, and Tina Ding, Science 349 (6255), 1518 (2015).
43 Nana Wang, Lu Cheng, Rui Ge, Shuting Zhang, Yanfeng Miao, Wei Zou, Chang Yi, Yan Sun, Yu Cao, and Rong Yang, Nature Photonics 10 (11), 699 (2016).
44 Yani Chen, Yong Sun, Jiajun Peng, Wei Zhang, Xiaojun Su, Kaibo Zheng, Tõnu Pullerits, and Ziqi Liang, Advanced Energy Materials 7 (18), 1700162 (2017).
45 Nobuaki Kitazawa, Japanese Journal of Applied Physics 35 (Part 1, No. 12A), 6202 (1996).
46 Naoki Kawano, Kenji Shinozaki, Daisuke Nakauchi, Hiromi Kimura, and Takayuki Yanagida, Journal of Applied Physics 127 (21), 213103 (2020).
47 G. C. Papavassiliou and I. B. Koutselas, Synthetic Metals 71 (1), 1713 (1995).
48 J Wenus, Radoslav Parashkov, S Ceccarelli, Antoine Brehier, J-S Lauret, MS Skolnick, E Deleporte, and DG Lidzey, Physical Review B 74 (23), 235212 (2006).
49 Sanjun Zhang, Gaëtan Lanty, Jean-Sébastien Lauret, Emmanuelle Deleporte, Pierre Audebert, and Laurent Galmiche, Acta Materialia 57 (11), 3301 (2009).
50 Kootak Hong, Quyet Van Le, Soo Young Kim, and Ho Won Jang, Journal of Materials Chemistry C 6 (9), 2189 (2018).
51 Gaëtan Lanty, Antoine Brehier, Radoslav Parashkov, Jean-Sébastien Lauret, and Emmanuelle Deleporte, New Journal of Physics 10 (6), 065007 (2008).
52 Albert Einstein, Physikalische Zeitschrift 18, 121 (1917).
53 Eugene Hecht, Optics. (Addison Wesley, United States of America, 2002).
54 Hui Deng, Hartmut Haug, and Yoshihisa Yamamoto, Reviews of modern physics 82 (2), 1489 (2010).
55 JM Gérard, B Sermage, B Gayral, B Legrand, E Costard, and V Thierry-Mieg, Physical review letters 81 (5), 1110 (1998).
56 Ting Zhang, Feng Wang, Hao Chen, Long Ji, Yafei Wang, Chun Li, Markus B Raschke, and Shibin Li, ACS Energy Letters 5 (5), 1619 (2020).
57 William Henry Bragg and William Lawrence Bragg, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 88 (605), 428 (1913).
58 Yun Lin, Yang Bai, Yanjun Fang, Qi Wang, Yehao Deng, and Jinsong Huang, ACS Energy Letters 2 (7), 1571 (2017).
59 Hidetsugu Takagi, Hideyuki Kunugita, and Kazuhiro Ema, Physical Review B 87 (12), 125421 (2013).
60 IB Koutselas, Laurent Ducasse, and George C Papavassiliou, Journal of Physics: Condensed Matter 8 (9), 1217 (1996).
61 TLKZ Schmidt, K Lischka, and W Zulehner, Physical Review B 45 (16), 8989 (1992).
62 Haiping He, Qianqian Yu, Hui Li, Jing Li, Junjie Si, Yizheng Jin, Nana Wang, Jianpu Wang, Jingwen He, and Xinke Wang, Nature communications 7 (1), 1 (2016).
63 Y. P. Varshni, Physica 34 (1), 149 (1967).
64 Dong Liang, Yuelin Peng, Yongping Fu, Melinda J Shearer, Jingjing Zhang, Jianyuan Zhai, Yi Zhang, Robert J Hamers, Trisha L Andrew, and Song Jin, ACS nano 10 (7), 6897 (2016).
65 Jun Wang, Rui Su, Jun Xing, Di Bao, Carole Diederichs, Sheng Liu, Timothy CH Liew, Zhanghai Chen, and Qihua Xiong, ACS nano 12 (8), 8382 (2018).
66 Wei Bao, Xiaoze Liu, Fei Xue, Fan Zheng, Renjie Tao, Siqi Wang, Yang Xia, Mervin Zhao, Jeongmin Kim, and Sui Yang, Proceedings of the National Academy of Sciences 116 (41), 20274 (2019).
67 HC Hsueh, GY Guo, and Steven G Louie, Physical Review B 84 (8), 085404 (2011).
校內:2026-08-17公開