簡易檢索 / 詳目顯示

研究生: 陳品安
Chen, Pin-An
論文名稱: 鈷基粉材積層於鉻鉬合金鋼之殘餘應力模擬與披覆參數設計研究
Residual Stress Simulation and Parameter Design of Cobalt-Based Powder Cladding on Chromium-Molybdenum Alloy Steel
指導教授: 趙儒民
Chao, Ru-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 127
中文關鍵詞: 雷射披覆殘餘應力有限元素分析鈷基粉材
外文關鍵詞: laser cladding, residual stress, finite element analysis, cobalt-based powder material
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I 致謝 V 目錄 VI 圖目錄 X 表目錄 XVII 第1章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究方法 11 1.4 論文架構 12 第2章 殘餘應力模擬理論 13 2.1 有限元素法簡介 13 2.2 熱傳分析理論[11] 14 2.2.1 高斯熱源模型 19 2.2.2 熱對流係數 20 2.2.3 熱輻射 20 2.3 殘餘應力理論 22 2.3.1 熱應力理論 24 2.3.2 有限元熱固耦合[12] 27 2.3.3 von Mises 應力準則 30 2.4 Ansys模擬軟體[17][18] 32 2.4.1 Ansys Workbench 33 2.4.2 雷射披覆模擬分析流程 34 2.4.3 生死元素的使用 35 2.4.4 溫場模擬假設條件 36 第3章 文獻模擬比對 38 3.1 同材料披覆,Chew et al[3] 38 3.1.1 溫場邊界條件設定 40 3.1.2 生死元素設置 41 3.1.3 溫度結果比對 43 3.1.4 殘餘應力模擬 45 3.1.5 全模型殘餘應力比對 50 3.1.6 全模型與半模型運算時間比較 51 3.2 異材料披覆,Tamanna et al[7] 53 3.2.1 材料性質設置 53 3.2.2 溫場邊界條件設定 54 3.2.3 溫度結果比對 55 3.2.4 殘餘應力比對 55 第4章 鉻鉬合金鋼表面硬化之殘餘應力 57 4.1 沖棒介紹 57 4.2 生死元素設置 61 4.3 雷射移動路徑及參數設置 62 4.4 溫度結果比對 63 4.5 殘餘應力模擬 65 4.5.1 單層至三層披覆應力分布 65 4.5.2 多層披覆殘餘應力分析 71 第5章 不同尺寸沖棒參數設計 77 5.1 影響披覆成果之參數 77 5.2 沖棒參數設計 79 5.2.1 功率與移動速度參數調整 83 5.2.2 送粉率與重疊率之調整 88 5.2.3 披覆參數與披覆表面積關係 89 5.3 大沖棒披覆實驗 91 5.3.1 稀釋區厚度估算 96 5.3.2 殘餘應力模擬 100 第6章 結論與未來建議 101 6.1 結論 101 6.2 未來建議 105 參考文獻 106

    [1] https://en.wikipedia.org/wiki/Chuck_Hull
    [2] Zhao Hong-yun et al, Tempera ture and stress fields of multi-track laser cladding, Trans. Nonferrous Met. Soc. China 19(2009) s495-s501
    [3] Youxiang Chew et al, Thermo-mechanical model for simulating laser cladding inducedresidual stresses with single and multiple clad beads, Journal of Materials Processing Technology 224 (2015) 89–101
    [4] Navid Nazemi et al. “Hardness and residual stress modeling of powder injection laser cladding of P420 coating on AISI 1018 substrate” Int J Adv Manuf Technol (2017) 93:3485–3503
    [5] Chenggang Ding et al, Effects of Substrate Preheating Temperatures on the Microstructure, Properties, and Residual Stress of 12CrNi2 Prepared by Laser Cladding Deposition Technique, Materials (2018), 11, 2401
    [6] Parisa Farahmand et al, An experimental numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser, Optics & Laser Technology 63 (2014) 154 168
    [7] N. Tamanna et al, Thermo-mechanical modelling to evaluate residual stress and material compatibility of laser cladding process depositing similar and dissimilar material on Ti6Al4V alloy, Thermal Science and Engineering Progress (2022)101283
    [8] U. de Oliveira et al. , Analysis of coaxial laser cladding processing conditions, Surface & Coatings Technology 197 (2005) 127-136
    [9] 李辰偉,低成本雷射披覆製造軟硬體整合研究,國立成功大學系統所碩士論文,2023
    [10] 陳建霖,使用鈷基粉材的直接能量法溫場及披覆模擬研究,國立成功大學系統所碩士論文,2023
    [11] 王勗成,有限元素法基本原理與數值方法,亞東書局印行,1990
    [12] J. P. Carter et al, ”Finite element analysis of coupled thermoelasticity”, Computers & Structures Vol. 31. No. I, pp. 73-80.(1989)
    [13] Fangping Yao et al, “Thermal Stress Cycle Simulation in Laser Cladding Process of Ni-Based Coating on H13 Steel”, MDPI(2021)
    [14] Goldak, J et al, “A New Finite Element Model for Welding Heat Sources”, Metallurgical Transactions B, Vol.15B, June 1984, pp.299-305
    [15] Hosford, William F. 2005. "Residual Stresses." In Mechanical Behavior of Materials, 308–321. Cambridge University Press. ISBN 978-0-521-84670-7
    [16] Marius Rupp et al, Iterative 3D modeling of thermal effects in end‑pumped continuous‑wave HO^(3+):YAG lasers, Applied Physics B Laser and optics(2023)
    [17] Ansys 2021 R1 Mechanical User’s Guide
    [18] 任繼文,Ansys Workbench現代機械設計實用教程,化學工業出版社,2022
    [19] Rachid Fakir et al, “Analysis of the Mechanical Behavior of AISI 4340 Steel Cylindrical Specimens Heat Treated with Fiber Laser”, Journal of Manufacturing Processes 55 (2020) 41–56
    [20] Metallic Materials Properties Development and Standardization (MMPDS)
    [21] https://waldunsteel.com/products/4340-steel/
    [22] 鄭欽源,有限元素法應用於7075鋁合金焊接模擬之研究,國立臺灣師範大學工業教育學系研究所碩士論文,2007
    [23] Woei-Shyan Lee et al, “The plastic deformation behaviour of AISI 4340 alloy steel subjected to high temperature and high strain rate loading conditions” Journal of Materials Processing Technology 71 (1997) 224-234
    [24] https://www.jfs-steel.com/zh-TW/product/SKD61.html
    [25] Min Ah Beck et al, “The Effect of Fe on the Mechanical Properties of Stellite 6” MDPI (2024)
    [26] https://tw.emilymetal.com/1-2344-skd61-h13-tool-steel-hot-work-mold-steel.html
    [27] A. Suárez et al, “Study of residual stresses generated inside laser cladded plates using FEM and diffraction of synchrotron radiation” Surface & Coatings Technology 204 (2010) 1983–1988
    [28] 石佩璇,千瓦級雷射的溫場效應對金屬披覆成效之研究,國立成功大學系統所碩士論文,2020
    [29] Pedro Ramiro et al, “Strategy Development for the Manufacturing of Multilayered Structures of Variable Thickness of Ni-Based Alloy 718 by Powder-Fed Directed Energy Deposition” MDPI (2020)

    無法下載圖示 校內:2029-07-31公開
    校外:2029-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE