簡易檢索 / 詳目顯示

研究生: 張浩偉
Chang, Hao-wei
論文名稱: 改質水庫淤泥混凝土於基礎工程之應用
Concrete with Organo-Modified Reservoir Sludge Used in Foundation Engineering
指導教授: 黃忠信
Huang, Jung-shin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 104
中文關鍵詞: 混凝土滲透性改質水庫淤泥
外文關鍵詞: concrete, permeability, organo-modified reservoir sludge
相關次數: 點閱:102下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為評估改質水庫淤泥應用於基礎工程混凝土之適用性,本研究選用水中及抗滲混凝土,並添加改質水庫淤泥於此二種混凝土中,觀察其新拌混凝土及硬固混凝土性質,藉以瞭解這兩種改質水庫淤泥混凝土,於實際工程應用上之適當添加量及使用方式。研究結果顯示,配比設計之強塑劑使用量須隨改質水庫淤泥添加量增加而增加,以維持新拌混凝土之工作性。添加改質水庫淤泥,將導致混凝土孔隙率增加40%~120%,水泥漿體與骨材間之界面強度下降約50%,造成硬固混凝土機械性質變差,影響程度則隨改質水庫淤泥添加量增加而增加。至於混凝土滲透性之改善程度,則分別與水中及抗滲混凝土之配比設計有關,水中混凝土之改質水庫淤泥合適添加量為5%,抗滲混凝土之改質水庫淤泥合適添加量則為2.5%。

    In this study, organo-modified reservoir sludge (OMRS) particles are used as a partial replacement for fine aggregates in underwater concrete and permeability-resistant concrete typically utilized for foundation engineering. Based on a series of measurements on the engineering properties of fresh and hardened concretes, the optimal dosages of OMRS particles for these two kinds of foundation engineering concretes are determined. To maintain a good workability of fresh concrete, it is found that the fraction of super-plasticizer increases as the percentage of OMRS particles used is increased. As compared to the concretes without OMRS particles, the increase of porosity in the two kinds of concretes with OMRS particles is 40~120% while the decrease of interfacial strength between coarse aggregate and cement mortar is roughly 50%. Consequently, their mechanical properties decrease with increasing percentage of OMRS particles. Also, the permeability resistance of concretes with OMRS particles can be much improved, depending on the mixture proportion design of concrete used. Experimental results suggest that the optimal dosage of OMRS particles for underwater concrete with a good permeability resistance is 5% and that for permeability-resistant concrete is 2.5%.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1研究動機與目的 1 1.2本文組織與內容 2 第二章 相關理論與文獻回顧 4 2.1水庫淤泥改質原理 4 2.1.1黏土之結構與性質 4 2.1.2黏土有機化改質 5 2.2改質水庫淤泥對水泥砂漿工程性質之影響 6 2.2.1改質水庫淤泥性質 7 2.2.2含改質水庫淤泥之水泥砂漿工程性質 7 2.3混凝土滲透性與耐久性 8 2.3.1礦物摻料及化學添加劑之影響 9 2.3.2孔隙結構與滲透性 11 2.3.3混凝土耐久性概述 12 2.3.4化學侵蝕 13 2.3.5常見混凝土滲透性試驗 14 第三章 研究方法與試驗步驟 30 3.1試驗規劃 30 3.1.1試驗目的 30 3.1.2配比設計 30 3.2試驗方法及項目 31 3.2.1新拌混凝土性質 32 3.2.2硬固混凝土性質 33 第四章 試驗結果與討論 45 4.1新拌混凝土性質 45 4.2硬固混凝土性質 46 4.2.1機械性質 46 4.2.2滲透性 51 4.2.3微結構 58 4.2.4綜合討論 63 第五章 結論與建議 98 參考文獻 101

    [1] 陳志榮,「改質水庫淤泥對水泥砂漿工程性質之影響」,國立成功大學土木工程研究所,碩士論文,(2005)。

    [2] 內政部建築研究所,「建築物防水設計手冊」,台北,(2001)。

    [3] 黃忠信,郭文毅,彭淑娟,「水庫淤泥生態性利用之整體研究」,國立成功大學,(2004)。

    [4] 施國欽,「大地工程學(一)土壤力學篇」,文笙書局,(1996)。

    [5] 王明光,「土壤環境礦物學」,藝軒圖書出版社,(2000)。

    [6] 林江珍,張裕忠,「天然黏土改質反應及奈米化」,塑膠資訊,第82期,(2003)。

    [7] 刈米孝夫,「界面活性劑的原理與應用」,高立圖書有限公司,(2003)。

    [8] W.Y. Kuo, Effects of Organo-Modified Layered Silicates on the Microstructure and Properties of Cement Mortars, Department of Civil Engineering National Cheng Kung University, Ph.D. Thesis, (2006).

    [9] 黃兆龍,「混凝土性質與行為」,詹氏書局,(2002)。

    [10] M.D.A Thomas, P.B. Bamforth, Modelling chloride diffusion in concrete effect of fly ash and slag, Cem. Concr. Res. 29 (1999) 487-495.

    [11] T.H. Wee, A.K. Suryavanshi, S.S. Tin, Evaluation of rapid chloride permeability (RCPT) results for concrete containing mineral admixtures, ACI Material Journal, March-April, (2000) 221-232.

    [12] 王暄豐,「利用快速氯離子滲透試驗評估飛灰/爐石混凝土之耐久性」,國立臺灣海洋大學材料工程研究所,碩士論文,(2004)。

    [13] 肖佳,鄧德華,唐咸燕,陳烽,陳雷,「礦渣和石灰石粉雙摻對混凝土抗氯離子滲透性能影響的試驗」,工業建築,2007年第37捲第10期,73-75。

    [14] 王斐峰,鄧學鈞,秦鴻根,「C50高性能混凝土耐久性試驗研究」,橋樑建設,2005 (6),69-71。

    [15] 何梁,馬春梅,王曉輝,「引氣減水劑對混凝土抗滲性影響的實驗研究」,內蒙古農業大學學報(自然科學版),2006年第27捲第4期,174-175。

    [16] 郝建英,田香菊,黨淑娥,趙曉東,張敏剛,「摻高效減水劑的混凝土性能研究」,太原科技大學學報,2006年第27捲第2期,94-96。

    [17] R. Kumar, B. Bhattacharjee, Porosity, pore size distribution and in situ strength of concrete, Cem. Concr. Res. 33 (2003) 155-164.

    [18] K.S. Chia, M.H. Zhang, Water permeability and chloride penetrability of high- strength lightweight aggregate concrete, Cem. Concr. Res. 32 (2002) 639-645.

    [19] ACI Committee 201.2R, Guide to Durable Concrete, ACI Manual of Concrete, Practice, Proc. 74 (1992) 573-609.

    [20] 趙鐵軍,「混凝土滲透性」,科學出版社,2005。

    [21] D. Whiting, Rapid measurement of chloride permeability of concrete, Public Roads 45(3) (1981) 101-112.

    [22] C. Andrade, Calculation of chloride diffusion coefficients in concrete from ionic migration measurements, Cem. Concr. Res. 23 (1993) 724-742.

    [23] R.D. Hooton, What is need in a permeability test for evalution of concrete quality, Pore Structure and Permeability of Cementitious Materials, Materials Research Society Symposium Proceedings, Boston, USA, (1987) 1459-1475.

    [24] L. Tang, Concentration dependence of diffusion and migration of chloride ions; Part 1. Theoretical considerations, Cem. Concr. Res. 29 (1999) 1463-1468.

    [25] 買買江•木莎,曾源,「淺析影響混凝土耐久性的因素及其防治措施」,西部探礦工程,2006年第18捲第12期,249-250。

    [26] 馬惠珠,鄧敏,「鹼對鈣釩石结晶及溶解性能的影響」,南京工業大學學報(自然科學版),2007年第29捲第5期,37-40。

    [27] C. Carde, R. Francois, Aging damage model of concrete behavior during the leaching process, Materials and Structures/Materiaux et Constructions, 30, October (1997) 465-472.

    [28] C. Carde, R. Francois, Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties, Cem. Concr. Res. 27 (1997) 539-550.

    [29] 黃兆龍,「卜作嵐混凝土使用手冊」,財團法人中興工程顧問社, (2007)。

    [30] P.K. Metha, P.J.M. Monteiro, Concrete Structure,Properties,and Materials, Second Edition, Prentice-Hall, (1993) 548.

    [31] 余秉宥,「添加奈米改質黏土之水泥砂漿鬆弛行為」,國立成功大學土木工程研究所,碩士論文,(2004)。

    下載圖示 校內:2009-07-01公開
    校外:2009-07-01公開
    QR CODE