簡易檢索 / 詳目顯示

研究生: 翁語喬
Wong, Yu-chiau
論文名稱: 鉛二價化合物在多硫配位基下的合成、結構與鑑定
Syntheses, Structures, and Characterizations of Lead(II) Complexes in A Sulfur-rich Ligated Environment
指導教授: 許鏵芬
Hsu, Hua-fen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 114
中文關鍵詞: 烷基硫Pb-207 核磁共振光譜
外文關鍵詞: Pb, thiolate, 207Pb NMR
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鉛是一種潛藏在環境中並且帶有毒性的金屬,而鉛的配位化學已經受到重視並且被廣泛的研究。從研究中發現鉛會和生物體中含有很多半胱胺酸(Cysteine, Cys)的物質結合。因此,促使我們合成了一系列類似半胱胺酸(Cysteine, Cys)的配位基─烷基硫(thiolate)。這些配位基包括了PS3、PS3’、PS3’’、PhPS2’’、tBuPS2”以及PhPS1”。我們利用這些配位基去與Pb二價的金屬作反應並且探討其化學性質。
    在本論文中,[N(CH3)3(PhCH2)][Pb(PS3)] (1)、[N(C7H15)4][Pb(PS3’)] (2)、[N(C2H5)4][Pb(PS3”)] (3a及3b)、[Pb(PhPS2”)](4)、[Pb(tBuPS2”)](5)以及[Pb(PhPS1”)](6)這七種化合物已經成功的被合成出來。化合物1~6的結構已由X-ray繞射儀器所鑑定。其中,在固態下,化合物1、3b、4、5以及6都因為有分子間作用力(intermolecular interaction)而形成一維的鏈狀(one dimensional chain)或是類似二聚體(dimeric-like)的結構。此外我們也利用元素分析(EA, Elemental Analysis)、紅外光吸收光譜(infrared spectroscopy)、紫外光可見光光譜(ultraviolet-visible Spectroscopy)以及核磁共振光譜(nucleic magnetic resonance spectroscopy)去鑑定化合物1、2、3、4以及6。最後我們使用了Pb-207核磁共振光譜(207Pb NMR)去推論在溶液的狀態下化合物1以及3b並沒有分子間作用力,而化合物4以及6有分子間作用力。

    Pb(II) chemistry has drawn much attention due to toxicity and occurrence of this metal ion in the environment. Lead can interact with some biological molecules that contain cysteine residue. Therefore, we are motivated to explore the chemistry of lead(II) ion interacting with Cys-like ligands, thiolates, such as tribenzenethiolate, bisbenzenethiolate, and benzenethiolate (PS3, PS3’, PS3’’, PhPS2’’, tBuPS2”, and PhPS1”).
    In this research, seven Pb(II) complexes have been synthesized and characterized. They are [N(CH3)3(PhCH2)][Pb(PS3)] (1), [N(C7H15)4]- [Pb(PS3’)] (2), [N(C2H5)4][Pb(PS3”)] (3a and 3b), [Pb(PhPS2”)] (4), [Pb(tBuPS2”)] (5), and [Pb(PhPS1”)] (6). The structures of 1-6 were determined by X-ray diffraction. The data show that 1, 3b, 4, 5, and 6 have intermolecular interactions, leading to one-dimensional chain or dimer-like structure in the solid state. According to 207Pb NMR studies, the intermolecular interaction is absent in 1 and 3b in solution state, but present in 4 and 6. In addition, elemental analysis, infrared spectroscopy, ultraviolet-visible spectroscopy, 31P NMR, and 1H NMR were also used to characterize these complexes.

    Abstract in Chinese i Abstract ii Acknowledgement iii Contents v List of Schemes x List of Figures xi List of Tables xiv Chapter 1 General Introduction 1.1 Introduction 1 1.2 Lead in the Biological systems 1 1.2.1 The Effect of Lead Poising in the Plants 1 1.2.2 The Effect of Lead Poising in the Humans 3 1.3 Stereochemistry of Pb-complexes: Holo-directed and Hemi-directed Coordination 5 1.4 Discussion of the Reference and Motivation 6 Chapter 2 Experiments 2.1 Materials and Syntheses 10 2.1.1 Synthesis of [N(CH3)3(CH2Ph)][Pb(PS3)] (1) 12 2.1.2 Synthesis of [N(C7H15)4][Pb(PS3’)] (2) 12 2.1.3 Synthesis of [N(C2H5)4][PbPS3”] (3a) and [N(C2H5)4][Pb(PS3”)] (3b) 13 2.1.4 Synthesis of [Pb(PhPS2”)] (4) 14 2.1.5 Synthesis of [Pb(tBuPS2”)] (5) 14 2.1.6 Synthesis of [Pb(PhPS1”)] (6) 15 2.2 Single Crystal X-ray Structure Determination 15 2.3 Characterizations with Elemental Analysis 16 2.4 Characterizations with Infrared Spectroscopy 16 2.5 Characterizations with Ultraviolet-Visible Spectroscopy 16 2.6 Characterizations with Nucleic Magnetic Resonance Spectroscopy 16 2.6.1 207Pb NMR 17 2.6.2 31P NMR 18 2.6.3 1H NMR 18 Chapter 3 Result and discussion 3.1 Synthesis, Structure, and Spectra of [N(CH3)3(CH2Ph)][Pb(PS3)] (1) 19 3.1.1 Synthesis and Crystal Structure of [N(CH3)3(CH2Ph)][Pb(PS3)] (1) 19 3.1.2 Infrared Spectra of [N(CH3)3(CH2Ph)][Pb(PS3)] (1) 23 3.1.3 Ultraviolet-Visible Spectra of [N(CH3)3(CH2Ph)][Pb(PS3)] (1) 23 3.1.4 Nucleic Magnetic Resonance Spectra of [N(CH3)3(CH2Ph)][Pb(PS3)] (1) 25 (A) 207Pb NMR 25 (B) 31P NMR 26 3.2 Synthesis, structure, and spectra of [N(C7H15)4][Pb(PS3’)] (2) 27 3.2.1 Synthesis and X-ray Diffraction of [N(C7H15)4][Pb(PS3’)] (2) 27 3.2.2 Infrared Spectra of [N(C7H15)4][Pb(PS3’)] (2) 30 3.2.3 Ultraviolet-Visible Spectra of [N(C7H15)4][Pb(PS3’)] (2) 30 3.2.4 Nucleic Magnetic Resonance Spectra of [N(C7H15)4][Pb(PS3’)] (2) 32 (A) 207Pb NMR 32 (B) 31P NMR 33 3.3 Synthesis of [N(C2H5)4][Pb(PS3”)] (3a) and [N(C2H5)4][Pb(PS3”)] (3b) 34 3.3.1 Synthesis 34 3.3.2 Crystal Structure of [N(C2H5)4][Pb(PS3”)] (3a) 34 3.3.3 Crystal Structure of [N(C2H5)4][Pb(PS3”)] (3b) 37 3.3.4 Infrared Spectra of [N(C2H5)4][Pb(PS3”)] (3a) and [N(C2H5)4][Pb(PS3”)] (3b) 41 3.3.5 Ultraviolet-Visible Spectra of [N(C2H5)4][Pb(PS3”)] (3a) and [N(C2H5)4][Pb(PS3”)] (3b) 42 3.3.6 Nucleic Magnetic Resonance Spectra of [N(C2H5)4][Pb(PS3”)] (3a) and [N(C2H5)4][Pb(PS3”)] (3b) 43 (A) 207Pb NMR 43 (B) 31P NMR 44 3.4 Synthesis, Structure, and Spectra of [Pb(PhPS2”)] (4) 46 3.4.1 Synthesis and Crystal Structure of [Pb(PhPS2”)] (4) 46 3.4.2 Infrared Spectra of [Pb(PhPS2”)] (4) 49 3.4.3 Ultraviolet-Visible Spectra of [Pb(PhPS2”)] (4) 50 3.4.4 Nucleic Magnetic Resonance Spectra of [Pb(PhPS2”)] (4) 51 (A) 207Pb NMR 51 (B) 31P NMR 52 3.5 Synthesis, Structure, and Spectra of [Pb(tBuPS2”)] (5) 53 3.5.1 Syntheses and Crystal Structure of [Pb(tBuPS2”)] (5) 53 3.6 Synthesis, Structure, and Spectra of [Pb(PhPS1”)] (6) 57 3.6.1 Syntheses and Crystal structure of [Pb(PhPS1”)] (6) 57 3.6.2 Infrared Spectra of [Pb(PhPS1”)] (6) 61 3.6.3 Ultraviolet-Visible Spectra of [Pb(PhPS1”)] (6) 61 3.6.4 Nucleic Magnetic Resonance Spectra of [Pb(PhPS1”)] (6) 62 (A) 207Pb NMR 62 (B) 31P NMR 63 3.7 Discussion 65 Chapter 4 Conclusion 74 Reference 76 Appendix A: 1H NMR Spectrum 81 Appendix B: Atomic coordinates (×10–4) and isotropic displacement parameters (in Å2×10–3) 86 Appendix C: Anisotropic displacement parameters (Å2×10–3) 101 List of Schemes Chapter 1 General Introduction Scheme 1-1 Effect of Pb-poison in the plants 2 Scheme 1-2 Structure of the cysteine and glutathione 3 Scheme 1-3 (A) Holo-directed and (B) Hemi-directed Coordination 6 Scheme 1-4 Difference between Pb-L and Pb-lp-X of the hemi-directed and holo-directed Pb complex 6 Scheme 1-5 Sulfur-rich ligands used in this research 9 Chapter 4 Conclusion Scheme 4-1 Synthesis of the complex 1~6 75 List of Figures Chapter 1 General Introduction Fig.1-1 (a) Tertiary structure of ALAD (b) Synthesis of porphobilinogen catalyst by ALAD (c) Zinc binding site of ALAD 4 Fig. 1-2 Structures isolated by (a) Philip et al. (b) Brian et al. 7 Fig. 1-3 Lead-thiolate complexes investigated by (a) Brian et al. (b) Paulo et al. (c) Sarah et al. (d) Mohan et al. 8 Chapter 2 Experiments Fig. 2-1 207Pb-1H heteronuclear multiple-quantum correlation spectrum of PbPh4 17 Chapter 3 Result and discussion Fig. 3-1 (a) ORTEP diagram of complex 1 shown with 35% thermal ellipsoids. H atoms and cations are omitted for clarity (b) intermolecular interaction of complex 1 (c) packing diagram of complex 1 (d) one-dimensional chain of complex 1 21 Fig. 3-2 IR spectra of [N(CH3)3(CH2Ph)][PbPS3] (1) (blue line) and PS3H3 (black line) 23 Fig. 3-3 UV/Vis spectrum of [N(CH3)3(CH2Ph)][PbPS3] (1) in DMF Concentration = 5.61 × 10–5 mol/L 24 Fig. 3-4 207Pb NMR spectrum of [N(CH3)3(CH2Ph)][PbPS3] (1) 25 Fig. 3-5 31P NMR spectrum of [N(CH3)3(CH2Ph)][PbPS3] (1) 26 Fig. 3-6 ORTEP diagram of complex 2 shown with 35% thermal ellipsoids. H atoms and cations are omitted for clarity 29 Fig. 3-7 IR spectra of PS3’H3 (black line) and [N(C7H15)4][PbPS3’] (2) (blue line) 30 Fig. 3-8 UV/Vis spectrum of [N(C7H15)4][PbPS3’] (2) in DMF Concentration = 3.55 × 10–5 mol/L 31 Fig. 3-9 207Pb NMR spectrum of [N(C7H15)4][PbPS3’] (2) 32 Fig. 3-10 31P NMR spectrum of [N(C7H15)4][PbPS3’] (2) 33 Fig. 3-11 ORTEP diagram of complex 3a shown with 35% thermal ellipsoids. H atoms and cation are omitted for clarity 36 Fig. 3-12 (a) ORTEP diagram of complex 3b shown with 35% thermal ellipsoids. H atoms and cation are omitted for clarity (b) intermolecular interaction of complex 3b (c) packing diagram of complex 3b (d) one-dimensional chain of complex 3b 40 Fig. 3-13 IR spectra of PS3”H3 (black line) and [N(C2H5)4][PbPS3”] (3) (blue line) 42 Fig. 3-14 UV/Vis spectrum of [N(C2H5)4][PbPS3”] (3) in DMF Concentration = 3.08 × 10–5 mol/L 43 Fig. 3-15 207Pb NMR spectrum of [N(C2H5)4][PbPS3”] (3) 44 Fig. 3-16 31P NMR spectrum of [N(C2H5)4][PbPS3”] (3) 45 Fig. 3-17 (a) ORTEP diagram of complex 4 shown with 35% thermal ellipsoids. H atoms are omitted for clarity (b) intermolecular interaction of complex 4 (c) packing diagram of complex 4 48 Fig. 3-18 IR spectra of PhPS2”H2 (black line) and [PbPhPS2”] (4) (blue line) 50 Fig. 3-19 UV/Vis spectrum of [PbPhPS2”] (4) in DMF Concentration = 5.32 × 10–5 mol/L 51 Fig. 3-20 207Pb NMR spectrum of [PbPhPS2”] (4) 52 Fig. 3-21 31P NMR spectrum of [PbPhPS2”] (4) 52 Fig. 3-22 (a) ORTEP diagram of complex 5 shown with 35% thermal ellipsoids. H atoms are omitted for clarity (b) intermolecular interaction of complex 5 (c) packing diagram of complex 5 (d)one-dimensional chain of complex 5 55 Fig. 3-23 (a) ORTEP diagram of complex 6 shown with 35% thermal ellipsoids. H atoms are omitted for clarity (b) intermolecular interaction of complex 6 (c) packing diagram of complex 6 59 Fig. 3-24 IR spectra of PhPS1”H (black line) and [PbPhPS1”](6) (blue line) 61 Fig. 3-25 UV/Vis spectrum of [PbPhPS1”](6) in CH2Cl2 Concentration = 7.67 × 10–5 mol/L 62 Fig. 3-26 207Pb NMR spectrum of [PbPhPS1”](6) 63 Fig. 3-27 31P NMR spectrum of [PbPhPS1”](6) 64 Fig. 3-28 UV/Vis spectra of complexes 1, 2, 3, 4, and 6 67 Fig. 3-29 207Pb NMR spectra of complexes 1, 2, 3, 4, and 6 70 Fig. 3-30 1H NMR spectrum of complex 6 71 List of Table Chapter 2 Experiments Table 2-1 Material used in this research 10 Chapter 3 Result and discussion Table 3-1 Crystal data and refinement parameters for complex 1 20 Table 3-2 Selected bond lengths (Å) and bond angles (deg) for complex 1 22 Table 3-3 Crystal data and refinement parameters for complex 2 28 Table 3-4 Selected bond lengths (Å) and bond angles (deg) for complex 2 29 Table 3-5 Crystal data and refinement parameters for complex 3a 35 Table 3-6 Selected bond lengths (Å) and bond angles (deg) for complex 3a 37 Table 3-7 Crystal data and refinement parameters for complex 3b 39 Table 3-8 Selected bond lengths (Å) and bond angles (deg) for complex 3b 41 Table 3-9 Crystal data and refinement parameters for complex 4 47 Table 3-10 Selected bond lengths (Å) and bond angles (deg) for complex 4 49 Table 3-11 Crystal data and refinement parameters for complex 5 54 Table 3-12 Selected bond lengths (Å) and bond angles (deg) for complex 5 56 Table 3-13 Crystal data and refinement parameters for complex 6 58 Table 3-14 Selected bond lengths (Å) and bond angles (deg) for complex 6 60 Table 3-15 The average bond lengths of Pb-S and Pb-P for complex 1~6 65 Table 3-16 The average bond lengths and coupling constant of Pb-P for complexes 1, 2, 3, 4, and 6 66 Table 3-17 Summaries of the chemical shifts of 207Pb NMR of Pb complexes 72

    1. Ghosh, M., A Review on Phytoremediation fo Heavy Metals and Utilization of Its Byproduct. Appl. Ecol. Env. Res. 2005, 3, (1), 1-18.
    2. Esteban-Gómez, D.; Platas-Iglesias, C.; Avecilla, F.; Blas, A. d.; Rodríguez-Blas, T., Effect of Protonation and Interaction with Anions on a Lead(II) Complex with a Lateral Macrobicycle Containing a Phenol Schiff-Base Spacer. Eur. J. Inorg. Chem. 2007, 2007, (12), 1635-1643.
    3. Sharma, P.; Dubey, R. S., Lead toxicity in plants. Braz. J. Plant Physi. 2005, 17, 35-52.
    4. Jarzecki, A. A., Lead-Poisoned Zinc Fingers: Quantum Mechanical Exploration of Structure, Coordination, and Electronic Excitations. Inorg. Chem. 2007, 46, (18), 7509-7521.
    5. Shimoni-Livny, L.; Glusker, J. P.; Bock, C. W., Lone Pair Functionality in Divalent Lead Compounds. Inorg. Chem. 1998, 37, (8), 1853-1867.
    6. Abu-Dari, K.; Hahn, F. E.; Raymond, K. N., Lead sequestering agents. 1. Synthesis, physical properties, and structures of lead thiohydroxamato complexes. J. Am. Chem. Soc. 1990, 112, (4), 1519-1524.
    7. Cobbett, C. S., Phytochelatins and Their Roles in Heavy Metal Detoxification. Plant Physiol. 2000, 123, (3), 825-832.
    8. Speiser, D. M.; Ortiz, D. F.; Kreppel, L.; Scheel, G.; McDonald, G.; Ow, D. W., Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe. Mol. Cell. Biol. 1992, 12, (12), 5301-5310.
    9. Rauser, W. E., Phytochelatins and Related Peptides (Structure, Biosynthesis, and Function). Plant Physiol. 1995, 109, (4), 1141-1149.
    10. Rauser, W., Structure and function of metal chelators produced by plants. Cell Biochem. Biophys. 1999, 31, (1), 19-48.
    11. Mehra a, R. K.; Tran, K.; Scott, G. W.; Mulchandani, P.; Saini, S. S., Ag(I)-Binding to Phytochelatins. J. Inorg. Biochem. 1996, 61, 125-142.
    12. Scarano, G.; Morelli, E., Characterization of cadmium- and lead- phytochelatin complexes formed in a marine microalga in response to metal exposure. BioMetals 2002, 15, 145-151.
    13. Huo, C.; Wang, C.; Zhao, M.; Peng, S., Stereoselective Synthesis of Natural N-(1-Deoxy-D-β-fructos-1-yl)-L-amino Acids and Their Effect on Lead Decorporation. Chem. Res. Toxicol. 2004, 17, (8), 1112-1120.
    14. Pan, T.; Uhlenbeck, O. C., A small metalloribozyme with a two-step mechanism. Nature 1992, 358, 560-563.
    15. Brown, R. S.; Dewan, J. C.; Klug, A., Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of yeast phenylalanine tRNA. Biochemistry 1985, 24, (18), 4785-4801.
    16. Bridgewater, B. M.; Parkin, G., Lead Poisoning and the Inactivation of 5-Aminolevulinate Dehydratase as Modeled by the Tris(2-mercapto-1-phenylimidazolyl)hydroborato Lead Complex, {[TmPh]Pb}[ClO4]. J. Am. Chem. Soc. 2000, 122, (29), 7140-7141.
    17. Erskine, P. T.; Senior, N.; Awan, S.; Lambert, R.; Lewis, G.; Tickle, I. J.; Sarwar, M.; Spencer, P.; Thomas, P.; Warren, M. J.; Shoolingin-Jordan, P. M.; Wood, S. P.; Cooper, J. B., X-ray structure of 5-aminolaevulinate dehydratase, a hybrid aldolase. Nat Struct Mol Biol 1997, 4, (12), 1025-1031.
    18. Erskine, P. T.; Norton, E.; Cooper, J. B.; Lambert, R.; Coker, A.; Lewis, G.; Spencer, P.; Sarwar, M.; Wood, S. P.; Warren, M. J.; Shoolingin-Jordan, P. M., X-ray Structure of 5-Aminolevulinic Acid Dehydratase from Escherichia coli Complexed with the Inhibitor Levulinic Acid at 2.0 Å Resolution. Biochemistry 1999, 38, (14), 4266-4276.
    19. Godwin, H. A., The biological chemistry of lead. Current Opinion in Chemical Biology 2001, 5, 223-227.
    20. David Esteban; Ban˜obre, D.; Blas, A. s. d.; Rodrı´guez-Blas, T.; Bastida, R.; Macı´as, A.; Rodrı´guez, A.; Fenton, D. E.; Adams, H.; Mahı´a, J., Cadmium(II) and Lead(II) Complexes with Novel Macrocyclic Receptors Derived from 1,10-Diaza-15-crown-5. European Journal of Inorganic Chemistry 2000, 2000, (7), 1445-1456.
    21. Magyar, J. S.; Weng, T. C.; Stern, C. M.; Dye, D. F.; Rous, B. W.; Payne, J. C.; Bridgewater, B. M.; Mijovilovich, A.; Parkin, G.; Zaleski, J. M.; Penner-Hahn, J. E.; Godwin, H. A., Reexamination of Lead(II) Coordination Preferences in Sulfur-Rich Sites: Implications for a Critical Mechanism of Lead Poisoning. J. Am. Chem. Soc. 2005, 127, (26), 9495-9505.
    22. Fan, S. R.; Zhu, L. G., Syntheses, Structures, and Characterizations of Four New Lead(II) 5-Sulfosalicylate Complexes with Both Chelating and Bridging Neutral Ligands. Inorg. Chem. 2007, 46, (16), 6785-6793.
    23. Dean, P. A. W.; Vittal, J. J.; Payne, N. C., Discrete trigonal-pyramidal lead(II) complexes: syntheses and x-ray structure analyses of [(C6H5)4As][Pb(EC6H5)3] (E = S, Se). Inorg. Chem. 1984, 23, (25), 4232-4236.
    24. Parkin, G., The synthesis and molecular structure of [TmPh]2Pb: a complex with an 'inverted' η4-coordination mode for the tris(2-mercapto-1-phenylimidazolyl) hydroborato ligand. Inorganic Chemistry Communications 2000, 3, 534-536.
    25. Perez-Lourido, P.; Romero, J.; Garcia-Vazquez, J. A.; Sousa, A.; Zheng, Y.; Dilworth, J. R.; Zubieta, J., Lead(II) complexes with phosphorylthiolato and thiophosphorylthiolato ligands. Journal of the Chemical Society, Dalton Transactions 2000, (5), 769-774.
    26. Appleton, S. E.; Briand, G. G.; Decken, A.; Smith, A. S., Monomeric, one- and two-dimensional networks incorporating (2,6-Me2C6H3S)2Pb building blocks. Dalton Transactions 2004, (21), 3515-3520.
    27. Parkin, S.; Atwood, D. A., Two-dimensional network acquired by Pb(II)-2-aminoethanethiolate. Inorganica Chimica Acta 2006, 359, 3375-3378.
    28. Block, E.; Ofori-Okai, G.; Zubieta, J., 2-Phosphino- and 2-phosphinylbenzenethiols: new ligand types. J. Am. Chem. Soc. 1989, 111, (6), 2327-2329.
    29. Sheldrick, G. M., SADABS, Siemens Area Detector Absorption Correction Program, University of Göttingen, Göttingen, Germany. 1996.
    30. Sheldrick, G. M., SHELXTL, Program for Crystal Structure Determination, Siemens Analytical X-ray Instruments Inc., Madison, WI. 1994.
    31. Payne, J. C.; ter Horst, M. A.; Godwin, H. A., Lead Fingers: Pb2+ Binding to Structural Zinc-Binding Domains Determined Directly by Monitoring Lead-Thiolate Charge-Transfer Bands. J. Am. Chem. Soc. 1999, 121, (29), 6850-6855.
    32. Busenlehner, L. S.; Cosper, N. J.; Scott, R. A.; Rosen, B. P.; Wong, M. D.; Giedroc, D. P., Spectroscopic Properties of the Metalloregulatory Cd(II) and Pb(II) Sites of S. aureus pI258 CadC. Biochemistry 2001, 40, (14), 4426-4436.
    33. Claudio, E. S.; ter Horst, M. A.; Forde, C. E.; Stern, C. L.; Zart, M. K.; Godwin, H. A., 207Pb-1H Two-Dimensional NMR Spectroscopy: A Useful New Tool for Probing Lead(II) Coordination Chemistry. Inorg. Chem. 2000, 39, (7), 1391-1397.
    34. Lara A. Margolis; Jr, C. D. S.; Yoder, C. H., A 207Pb NMR study of the adducts of triphenyllead chloride and diphenyllead dichloride. Applied Organometallic Chemistry 2003, 17, (4), 236-238.
    35. Brown, I. D., Using chemical bonds to analyze data retrieved from the inorganic crystal structure database. J. Chem. Inf. Comput. Sci. 1989, 29, (4), 266-271.
    36. Andersen, R. J.; diTargiani, R. C.; Hancock, R. D.; Stern, C. L.; Goldberg, D. P.; Godwin, H. A., Characterization of the First N2S(alkylthiolate)lead Compound: A Model for Three-Coordinate Lead in Biological Systems. Inorg. Chem. 2006, 45, (17), 6574-6576.
    37. Rupprecht, S.; Franklin, S. J.; Raymond, K. N., Synthesis of monothiohydroxamic ligands and their lead complexes. Structures of N-methyl-3-pyridothiohydroxamic acid, bis(N-methyl-3-pyridothiohydroxamato) lead(II) and bis(N-cyclohexyl-phenylacetothiohydroxamato) lead(II). Inorganica Chimica Acta 1995, 235, 185-194.
    38. Reger, D. L.; Ding, Y.; Rheingold, A. L.; Ostrander, R. L., Lead(II) Complexes Containing Two Different Polydentate Ligands. Crystal and Molecular Structure of [HB(3,5-Me2pz)3]Pb(3,5-Me2pzH)3Cl (pz = Pyrazolyl Ring), a Cationic-Anionic, Double-Coordination Complex. Inorg. Chem. 1994, 33, (19), 4226-4230.

    下載圖示 校內:2011-08-13公開
    校外:2011-08-13公開
    QR CODE