簡易檢索 / 詳目顯示

研究生: 魏誠德
Wei, Cheng-Te
論文名稱: 以生命週期評估分析優化整合畜牧廢水能資源循環系統
Optimizing Integrated Livestock Wastewater Energy Resource Recycling Systems Using Life Cycle Assessment (LCA)
指導教授: 陳必晟
Chen, Pi-Cheng
學位類別: 碩士
Master
系所名稱: 其他 - 全校永續跨域國際碩士學位學程
International Master's Program in Interdisciplinary Sustainability Studies
論文出版年: 2026
畢業學年度: 113
語文別: 中文
論文頁數: 146
中文關鍵詞: 生命週期評估養豬廢水不確定性分析溫室氣體減量系統整合
外文關鍵詞: LCA, Livestock wastewater, Uncertainty analysis, Greenhouse gas mitigation, System integration
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以生命週期評估(Life Cycle Assessment, LCA)方法,系統性分析畜牧廢水能資源循環系統之環境績效,並探討優化選項。以台灣南部一畜牧場為對象,配合實驗室量測數據,建構三種廢水處理情境:傳統三段式處理(情境一)、模擬未來整合固態醱酵、厭氧醱酵、沼氣回收、微藻培植及植生固碳等資源化技術的先進系統(情境二),與進一步模擬整合方案移除微藻單元的優化方案(情境三)。透過實地調查與專業資料庫蒐集,建立完整的生命週期盤查(LCI)數據,並採用ReCiPe 2016 方法進行環境衝擊評估,涵蓋全球暖化、優養化、生態毒性、水資源消耗等 18 項中點指標,並進行終點層級總結。研究亦結合蒙地卡羅法進行不確定性分析,以及針對沼氣發電、肥料代替效益與飼料生產等關鍵參數進行敏感度分析。
    結果顯示,與傳統處理相比,整合循環資源技術能有效降低溫室氣體排放(全球暖化潛勢下降約66%),並於優養化與生態毒性類項呈現淨環境效益,顯著降低水體污染與生態風險。然而,因高耗能處理單元介入,化石資源消耗與部分健康風險指標略有增加。敏感度分析指出,飼料生產過程為系統環境負荷的主要貢獻來源。綜合比較,不確定性分析顯示全球暖化等關鍵指標結果具高可信度,但毒性與水資源類指標變異較大,需持續優化在地數據蒐集與模型假設。
    依據研究結果,建議以優化情境(S3)為過渡策略,逐步引入低能耗之微藻培育與產品加工,以進一步強化碳減量與營養回收,並搭配政策輔導與產業推廣加強整合循環經濟與減碳措施。同時,未來應納入經濟與社會永續維度以提升永續性評估的完整性,積極發展低碳能源與高效能資源回收技術。總體而言,本研究為台灣畜牧廢水處理轉型永續發展,提供了全面的科學依據與決策參考。

    This study applies life cycle assessment (LCA) to evaluate and optimize a livestock-wastewater energy–resource recycling system at a southern Taiwan farm across three scenarios: S1 (conventional three-stage), S2 (integrated solid-state fermentation, anaerobic digestion, biogas recovery, microalgae cultivation, and vegetation-based carbon sequestration), and S3 (an optimized option with a simplified microalgae subsystem). Based on on-site surveys and professional databases, we compiled an LCI and assessed 18 ReCiPe 2016 midpoint categories with endpoint aggregation, alongside Monte Carlo uncertainty and sensitivity analyses (biogas-to-power, fertilizer substitution, feed production). Relative to S1, circular-resource integration cuts global warming potential by ~66% and yields net benefits in eutrophication and ecotoxicity, while modestly increasing fossil resource use and certain health indicators due to higher energy demand. Feed production dominates the remaining burdens. Uncertainty is low for climate results but higher for toxicity and water-use categories, indicating a need for improved local data and assumptions. We recommend S3 as a transitional pathway, with gradual re-introduction of microalgae to enhance carbo-intron and nutrient recovery, supported by policy measures and future inclusion of economic and social dimensions.

    第一章 引言1 1.1 背景與動機1 1.2 研究目的3 1.2.1 研究工具3 1.3研究流程4 第二章 文獻回顧8 2.1生命週期評估(LCA)8 2.1.1 生命週期評估(LCA)介紹與應用8 2.1.2 生命週期評估的基本方法理論與評估架構10 2.1.3 生命週期評估的工具20 2.2畜牧廢水的研究22 2.2.1 我國養出產業現況22 2.2.2 畜牧廢水處理與管理方法24 2.3 LCA在相似系統中的應用、類似比較的缺陷26 2.3.1 LCA在畜牧廢水能資源循環的應用26 2.3.2 LCA的缺陷33 2.4 生命週期評估中的不確定性與敏感度分析34 第三章 研究方法39 3.1 研究架構39 3.2 目標與系統範疇定義:子系統細分45 3.3 盤查(Life Cycle Inventory, LCI)47 3.4 衝擊評估(Life Cycle Impact Assessment, LCIA)53 3.5 結果闡釋、不確定性分析與敏感度分析62 第四章 結果與討論64 4.1 各子系統的環境衝擊評估64 4.1.1 S1 情境一的環境衝擊評估64 4.1.2 S2 情境二的環境衝擊評估69 4.1.3 S3 情境三的環境衝擊評估77 4.1.4 S1、S2、S3 三種情境中點的比較79 4.1.5 S1、S2、S3 三種情境終點的比較87 4.1.6 與各種文獻進行比較97 4.2 生命週期不確定性分析104 4.2.1 S1情境一之不確定分析104 4.2.2 S2情境二之不確定分析110 4.2.3 S3情境三之不確定分析116 4.3 敏感度分析120 第五章 結論與建議123 5.1 結論123 5.2 建議124 5.2.1 研究發現總結的應用建議124 5.2.2 產業與政策意涵124 5.2.3 未來研究方向125 參考文獻126

    Albalate-Ramírez, A., Alcalá-Rodríguez, M. M., Miramontes-Martínez, L. R., Padilla-Rivera, A., Estrada-Baltazar, A., López-Hernández, B. N., & Rivas-García, P. (2022). Energy Production from Cattle Manure within a Life Cycle Assessment Framework: Statistical Optimization of Co-Digestion, Pretreatment, and Thermal Conditions. Sustainability, 14(24).
    Amado, M., Carrasco, J., Ochoa, L., Rangel, C., Becerra, A., Cabeza, I., & Acevedo, P. (2021). Environmental Analysis of Large-scale Pig Manure Digestion Through Process Simulation and Life Cycle Assessment. Chemical Engineering Transactions, 87, 439–444. https://doi.org/10.3303/CET2187074
    Andretta, I., Hickmann, F. M. W., Remus, A., Franceschi, C. H., Mariani, A. B., Orso, C., Kipper, M., Létourneau-Montminy, M.-P., & Pomar, C. (2021). Environmental Impacts of Pig and Poultry Production: Insights From a Systematic Review [Systematic Review]. Frontiers in Veterinary Science, Volume 8 - 2021. https://doi.org/10.3389/fvets.2021.750733
    Arashiro, L., Montero, N., Ferrer, I., Acién, F., Gómez, C., & Garfí, A. (2018). Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Science of The Total Environment, 622, 1118–1130. https://doi.org/10.1016/j.scitotenv.2017.12.051
    Cherubini, E., Zanghelini, G. M., Alvarenga, R. A. F., Franco, D., & Soares, S. R. (2015). Life cycle assessment of swine production in Brazil: a comparison of four manure management systems. Journal of Cleaner Production, 87, 68–77. https://doi.org/https://doi.org/10.1016/j.jclepro.2014.10.035
    Corominas, L., Foley, J., Guest, J. S., Hospido, A., Larsen, H. F., Morera, S., & Shaw, A. (2013). Life cycle assessment applied to wastewater treatment: state of the art. Water Res, 47(15), 5480–5492. https://doi.org/10.1016/j.watres.2013.06.049
    Crenna, E., Secchi, M., Benini, L., & Sala, S. (2019). Global environmental impacts: data sources and methodological choices for calculating normalization factors for LCA. The International Journal of Life Cycle Assessment, 24(10), 1851–1877. https://doi.org/10.1007/s11367-019-01604-y
    De Schryver, A. M., Brakkee, K. W., Goedkoop, M. J., & Huijbregts, M. A. J. (2009). Characterization Factors for Global Warming in Life Cycle Assessment Based on Damages to Humans and Ecosystems. Environmental Science & Technology, 43(6), 1689–1695. https://doi.org/10.1021/es800456m
    De Vries, J. W., Vinken, T. M. W. J., Hamelin, L., & De Boer, I. J. M. (2012). Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy – A life cycle perspective. Bioresource Technology, 125, 239–248. https://doi.org/https://doi.org/10.1016/j.biortech.2012.08.124
    Duan, N., Khoshnevisan, B., Lin, C., Liu, Z., & Liu, H. (2020). Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. Environment International, 137, 105522. https://doi.org/https://doi.org/10.1016/j.envint.2020.105522
    Feng, H., Zhao, J., Hollberg, A., & Habert, G. (2023). Where to focus? Developing a LCA impact category selection tool for manufacturers of building materials. Journal of Cleaner Production, 405, 136936. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.136936
    Ferreira, J., Santos, L., Ferreira, M., Ferreira, A., & Domingos, I. (2024). Environmental Assessment of Pig Manure Treatment Systems through Life Cycle Assessment: A Mini-Review. Sustainability, 16(9).
    Fusi, A., Bacenetti, J., Fiala, M., & Azapagic, A. (2016). Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion [Original Research]. Frontiers in Bioengineering and Biotechnology, Volume 4 - 2016. https://doi.org/10.3389/fbioe.2016.00026
    García Álvaro, A., Martínez-Hernando, M.-P., García-Martínez, M.-J., Ruiz Palomar, C., Suárez Rodríguez, M. d. C., Hermosilla, D., Ortega, M. F., & de Godos Crespo, I. (2025). Life cycle assessment of swine manure management: A comparison of different management systems with Montecarlo simulation. Journal of Cleaner Production, 502, 145368. https://doi.org/https://doi.org/10.1016/j.jclepro.2025.145368
    Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., & Van Zelm, R. (2017). ReCiPe 2016: A harmonised life cycle impact assessment method at midpoint and endpoint level – Update 2017. RIVM. https://www.rivm.nl/en/life-cycle-assessment-lca/recipe
    Guinee, J. (2001). Handbook on Life Cycle Assessment. An Operational Guide to the ISO Standards. The International Journal of Life Cycle Assessment, 7, 311–313. https://doi.org/10.1007/BF02978897
    Hauschild, M. Z., Goedkoop, M., Guinée, J., Heijungs, R., Huijbregts, M., Jolliet, O., Margni, M., De Schryver, A., Humbert, S., Laurent, A., Sala, S., & Pant, R. (2013). Identifying best existing practice for characterization modeling in life cycle impact assessment. The International Journal of Life Cycle Assessment, 18(3), 683–697. https://doi.org/10.1007/s11367-012-0489-5
    Hélias, A., & Brockmann, D. (2014). Use of fertilizing residues by agricultural activities in LCA studies.
    Hellweg, S., & Milà i Canals, L. (2014). Emerging approaches, challenges and opportunities in life cycle assessment. Science, 344(6188), 1109–1113. https://doi.org/10.1126/science.1248361
    Hollas, C. E., do Amaral, K. G. C., Lange, M. V., Higarashi, M. M., Steinmetz, R. L. R., Mariani, L. F., Nakano, V., Sanches-Pereira, A., de Martino Jannuzzi, G., & Kunz, A. (2024). Livestock waste management for energy recovery in Brazil: a life cycle assessment approach. Environ Sci Pollut Res Int, 31(3), 4705–4720. https://doi.org/10.1007/s11356-023-31452-1
    Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138–147. https://doi.org/10.1007/s11367-016-1246-y
    Ilgin, M. A., & Gupta, S. M. (2010). Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art. Journal of Environmental Management, 91(3), 563–591. https://doi.org/https://doi.org/10.1016/j.jenvman.2009.09.037
    Jayawickrama, K., Ruparathna, R., Seth, R., Biswas, N., Hafez, H., & Tam, E. (2024). Challenges and Issues of Life Cycle Assessment of Anaerobic Digestion of Organic Waste. Environments, 11(10).
    Jiang, Y., Zhang, Y., Wang, S., Wang, Z., Liu, Y., Hu, Z., & Zhan, X. (2021). Improved environmental sustainability and bioenergy recovery through pig manure and food waste on-farm co-digestion in Ireland. Journal of Cleaner Production, 280, 125034. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.125034
    Jungbluth, N. (2026). Description of life cycle impact assessment methods. E.-s. Ltd. https://esu-services.ch/address/tender/
    Lloyd, S., & Ries, R. (2007). Characterizing, Propagating, and Analyzing Uncertainty in Life‐Cycle Assessment: A Survey of Quantitative Approaches. Journal of Industrial Ecology, 11, 161–179. https://doi.org/10.1162/jiec.2007.1136
    López-Sánchez, A., García-López, C. D., Lara-Topete, G. O., Castanier-Rivas, J. D., Barajas-Álvarez, P., González-López, M. E., Silva-Gálvez, A. L., Zhou, H., Lan, C. Q., Robles-Rodriguez, C. E., Meramo-Hurtado, S., & Gradilla-Hernández, M. S. (2025). Consequential life cycle assessment of pretreatment strategies for a microalgae-based wastewater treatment pilot unit in a circular livestock industry bioeconomy. Algal Research, 89, 104041. https://doi.org/https://doi.org/10.1016/j.algal.2025.104041
    Mariyappan, V., Yu, C. L., Wu, W., & Chang, J. S. (2024). Circular bioeconomy approach for pig farming systems using microalgae-based wastewater treatment processes. Bioresour Technol, 393, 130134. https://doi.org/10.1016/j.biortech.2023.130134
    Mendoza Beltran, A., Prado, V., Font Vivanco, D., Henriksson, P. J. G., Guinée, J. B., & Heijungs, R. (2018). Quantified Uncertainties in Comparative Life Cycle Assessment: What Can Be Concluded? Environmental Science & Technology, 52(4), 2152–2161. https://doi.org/10.1021/acs.est.7b06365
    Miao, C., Zeller, V., & Schebek, L. (2024). Nutrient substitution for secondary fertilizer: Is current practice comprehensive enough? A review to reveal the LCA methodological challenges. The International Journal of Life Cycle Assessment, 29(4), 578–596. https://doi.org/10.1007/s11367-023-02248-9
    Nagarajan, D., Mariappan, N., Chen, C.-Y., Chen, J.-H., Dong, C.-D., Lee, D.-J., & Chang, J.-S. (2024). Biological treatment of swine wastewater—Conventional methods versus microalgal processes. Journal of the Taiwan Institute of Chemical Engineers, 105645. https://doi.org/https://doi.org/10.1016/j.jtice.2024.105645
    Nguyen, T. K. L., Ngo, H. H., Guo, W., Nghiem, L. D., Qian, G., Liu, Q., Liu, J., Chen, Z., Bui, X. T., & Mainali, B. (2021). Assessing the environmental impacts and greenhouse gas emissions from the common municipal wastewater treatment systems. Science of The Total Environment, 801, 149676. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.149676
    Orner, K. D., Cornejo, P. K., Rojas Camacho, D., Alvarez, M., & Camacho-Céspedes, F. (2021). Improving Life Cycle Economic and Environmental Sustainability of Animal Manure Management in Marginalized Farming Communities Through Resource Recovery. Environ Eng Sci, 38(5), 310–319. https://doi.org/10.1089/ees.2020.0262
    Prapaspongsa, T., Christensen, P., Schmidt, J., & Thrane, M. (2010). LCA of comprehensive pig manure management incorporating integrated technology systems. Journal of Cleaner Production - J CLEAN PROD, 18, 1413–1422. https://doi.org/10.1016/j.jclepro.2010.05.015
    Ramírez, M., Güereca, L., Sosa-Rodríguez, F., & Cobos, M. (2019). Environmental assessment of energy production from anaerobic digestion of pig manure at medium-scale using life cycle assessment. Waste management (New York, N.Y.), 102, 85–96. https://doi.org/10.1016/j.wasman.2019.10.012
    Rashid, S. S., Harun, S. N., Hanafiah, M. M., Razman, K. K., Liu, Y.-Q., & Tholibon, D. A. (2023). Life Cycle Assessment and Its Application in Wastewater Treatment: A Brief Overview. Processes, 11(1).
    Roibás, L., Loiseau, E., & Hospido, A. (2018). On the feasibility and interest of applying territorial Life Cycle Assessment to determine subnational normalisation factors. Science of The Total Environment, 626, 1086–1099. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.01.126
    Rybaczewska-Błażejowska, M., & Jezierski, D. (2024). Comparison of ReCiPe 2016, ILCD 2011, CML-IA baseline and IMPACT 2002+ LCIA methods: a case study based on the electricity consumption mix in Europe. The International Journal of Life Cycle Assessment, 29(10), 1799–1817. https://doi.org/10.1007/s11367-024-02326-6
    Santos, L., Ferreira, M., Domingos, I., Oliveira, V., Rodrigues, C., Ferreira, A., & Ferreira, J. (2025). Life Cycle Assessment of Pig Production in Central Portugal: Environmental Impacts and Sustainability Challenges. Sustainability, 17(2).
    Shih, M.-F., Lay, C.-H., Lin, C.-Y., & Chang, S.-H. (2023). Exploring the environmental and economic potential for biogas production from swine manure wastewater by life cycle assessment. Clean Technologies and Environmental Policy, 25(2), 451–464. https://doi.org/10.1007/s10098-021-02157-1
    Silva, D., Nunes, A., Piekarski, C., Moris, V., Souza, L., & Rodrigues, T. (2019). Why using different Life Cycle Assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem. 20, 304–315. https://doi.org/10.1016/j.spc.2019.07.005
    Teo, C. J., Karkou, E., Vlad, O., Vyrkou, A., Savvakis, N., Arampatzis, G., & Angelis-Dimakis, A. (2023). Life cycle environmental impact assessment of slaughterhouse wastewater treatment. Chemical Engineering Research and Design, 200, 550–565. https://doi.org/https://doi.org/10.1016/j.cherd.2023.11.016
    Thoma, G. J., Baker, B., & Knap, P. W. (2024). A Life Cycle Assessment Study of the Impacts of Pig Breeding on the Environmental Sustainability of Pig Production. Animals (Basel), 14(16). https://doi.org/10.3390/ani14162435
    Viotti, P., Tatti, F., Bongirolami, S., Romano, R., Mancini, G., Serini, F., Azizi, M., & Croce, L. (2024). Life Cycle Assessment Methodology Applied to a Wastewater Treatment Plant. Water, 16(8).
    Wang, S., Sahoo, K., Jena, U., Dong, H., Bergman, R., & Runge, T. (2021). Life-cycle assessment of treating slaughterhouse waste using anaerobic digestion systems. Journal of Cleaner Production, 292, 126038. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126038
    Yang, P., Yu, M., Ma, X., & Deng, D. (2023). Carbon Footprint of the Pork Product Chain and Recent Advancements in Mitigation Strategies. Foods, 12(23). https://doi.org/10.3390/foods12234203
    Yu, S., Deng, S., Zhou, A., Wang, X., & Tan, H. (2023). Life cycle assessment of energy consumption and GHG emission for sewage sludge treatment and disposal: a review [Review]. Frontiers in Energy Research, Volume 11 - 2023. https://doi.org/10.3389/fenrg.2023.1123972
    Zhang, Y., Bo, Q., Ma, X., Du, Y., Du, X., Xu, L., & Yang, Y. (2023). Solid–Liquid Separation and Its Environmental Impact on Manure Treatment in Scaled Pig Farms—Evidence Based on Life Cycle Assessment. Agriculture, 13(12), 2284.
    方志聪, 呼和涛力, 袁汝玲, 吴丹, 黄鑫, 于自溪, 雷廷宙, & 陈勇. (2022). 规模化立体生猪养殖系统环境影响评价. 生态与农村环境学报, 38(11), 1491–1500. https://doi.org/10.19741/j.issn.1673-4831.2022.0172
    王其文. (2023). 台灣地區畜牧廢水分流前處理以提升厭氧消化效率可行性評估 國立屏東科技大學]. 臺灣博碩士論文知識加值系統. 屏東縣. https://hdl.handle.net/11296/wtwmxa
    王颖, 王月, 吴昌永, 范帅, & 王浩. (2023). 西北生态脆弱区畜禽粪污处理技术综合评价. 环境工程技术学报, 13(2), 654–662. https://doi.org/10.12153/j.issn.1674-991X.20220080
    徐仙舟. (2012). 以穩流生物廢水處理系統處理養豬廢水與生活污水效率評估之研究 朝陽科技大學]. 臺灣博碩士論文知識加值系統. 台中市. https://hdl.handle.net/11296/c58e85
    葉亮均. (2021). 整合性生命週期評估探討循環農業下的豬糞肥管理策略 國立臺灣大學]. https://doi.org/10.6342%2fNTU202101300
    行政院農委會畜產行情資訊網 http://ppg.naif.org.tw/naif/MarketInformation/Pig/TranStatistics.aspx
    行政院農委會農業統計資料查詢 http://agrstat.coa.gov.tw/sdweb/public/maintenance/Announce.aspx
    黃雯婕. (2019, May 26). 淺談畜牧場的三段式廢水處理程序. 新創水科技研發服務網. https://www.itriwater.org.tw/Forum/article_more?id=45

    QR CODE