簡易檢索 / 詳目顯示

研究生: 楊宗侑
Yang, Zong-You
論文名稱: 晶相間交互作用對晶相演變及薄膜壓電性質的影響
Impacts of phase interactions on crystal evolution and thin-film piezoelectricity
指導教授: 阮至正
Ruan, Jr-Jeng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 89
中文關鍵詞: 鐵電高分子鐵電小分子有機分子壓電效應相互極化
外文關鍵詞: PVDF-TrFE, CRCA, Organic molecules, Piezoelectric, Phase interaction
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機鐵電小分子擁有不錯的極化強度與熱穩定性,若能結合有機鐵電高分子的可撓曲性以及生物相容性,在可穿戴式與可攜式裝置,甚至是奈米發電機(Nanogenerator)等方面將有巨大的應用價值。以兩種類純有機分子互相結合,以提升薄膜整體的極化特性,如壓電響應、奈米發電機輸出等,在學界較為少見且缺少這方面的研究,故透過結合有機小分子CRCA結晶與高分子PVDF-TrFE的策略,探討兩相間是否有互相極化的效應,提升薄膜的性能。
    將小分子CRCA析出於已結晶的PVDF-TrFE/PMMA薄膜後,透過掃描式電子顯微鏡(SEM)與原子力顯微鏡(AFM)觀察微觀形貌,發現小分子似乎有選擇性的分布於PVDF-TrFE板晶上的傾向,並且微示差掃描熱卡分析儀(DSC)的分析也表明兩相間親和性不錯。以此為起點,進一步分析小分子晶體在各種不同製程後的結晶與相位的演變,發現小分子在高溫下有晶相合併行為,且XRD繞射的證據也表明,透過製程的手段,可以微幅調整小分子的分子結構與其結晶取向。
    藉由靜電力顯微鏡(EFM)的量測,發現在熱處理後,小分子晶體與周圍的鐵電板晶極化方向不同,且利用壓電響應力顯微鏡(PFM)量測到因為互相極化而提升的壓電響應效應,證明了有機晶相間有互相極化的效果,且互相極化效應在兩晶相互相堆疊的垂直方向上,似乎存在一作用距離的極限。再利用垂直於基板方向的電場施加於混成薄膜後,觀察到小分子晶體隨著電場強度的增加,極化軸方向與鐵電高分子板晶極化軸方向逐漸相同,暗示了可以利用電場克服兩相間的作用力,調控小分子的極性軸方向的轉動。

    Organic ferroelectric small molecules have good polarization strength and thermal stability. With the flexibility and biocompatibility of organic ferroelectric polymers, they have potential for applications in wearable and portable devices, including nanogenerators.
    The combination of two types organic molecules could enhance the overall polarization properties of thin films, such as piezoelectric response and nanogenerator output, is a relatively underexplored area in the academic fields, and lack of detailed in-depth research.
    By combining crystalline organic small molecule CRCA with the polymer PVDF-TrFE, we investigate mutual polarization effect between the two phases to enhance thin film performance.
    Using scanning electron microscopy (SEM) and atomic force microscopy (AFM), we observed selective distribution tendency of small molecules CRCA on PVDF-TrFE lamellae area. Differential scanning calorimetry (DSC) analysis further confirmed affinity between the two phases. It was found that CRCA exhibited crystalline phase merge behavior at elevated temperatures, with X-ray diffraction (XRD) evidence suggesting that control the process could adjust the molecular structure and crystal orientation of small molecules. we observed polarization direction differences between small molecule crystals and the surrounding ferroelectric lamellae after heat treatment by electrostatic force microscopy (EFM). Piezoresponse force microscopy (PFM) demonstrated an enhanced piezoelectric response effect attributed to mutual polarization between organic crystals.
    Applying an electric field perpendicular to the substrate direction to the hybrid film revealed with increasing electric field intensity, the polarization axis of CRCA crystals gradually aligned with that of ferroelectric polymer lamellae. This suggests the potential to control the polarity axis direction of small molecules through electric fields, overcoming interphase forces.

    摘要 i 英文延伸摘要 ii 誌謝 vii 目錄 ix 表目錄 xi 圖目錄 xii 第1章 緒論 1 1.1 研究背景與動機 1 第2章 文獻回顧 4 2.1 有機小分子晶體簡介 4 2.1-1 偶極矩形成機制 4 2.1-2 質子傳輸機制 7 2.1-3 具有鐵電性質的質子型有機分子與基本性質 12 2.1-4 微觀電域極化現象 17 2.2 有機小分子之應用 21 2.2-1 有機鐵電元件製備 21 2.2-2 有機鐵電元件之電性質與性能比較 24 第3章 材料與實驗方法 30 3.1 實驗材料 30 3.2 實驗分析儀器 31 3.3 實驗步驟 36 3.3-1 薄膜製備 36 3.3-2 析出CRCA小分子於薄膜上 36 3.4 實驗流程 37 3.5 實驗分析 38 第4章 結果與討論 39 4.1 CRCA有機小分子與PVDF-TrFE高分子的親和性與結晶行為特性 39 4.1-1 小分子與高分子親和性鑑定 39 4.1-2 薄膜XRD分析 42 4.2 混成薄膜之壓電性質 51 4.2-1 小分子結晶壓電性質探討 51 4.2-2 熱處理與施加電場對於混成薄膜電性質與晶相演化之影響 55 4.2-3 鐵電有機高分子、小分子的互相極化 65 4.2-4 影響互相極化的因素與機制 76 4.3 混成薄膜之應用 80 4.3-1 Nanogenerator表現 80 第5章 結論 84 第6章 參考文獻 86

    [1] T. Mikolajick, S. Slesazeck, H. Mulaosmanovic, M. Park, S. Fichtner, P. Lomenzo, M. Hoffmann, U. Schroeder, Next generation ferroelectric materials for semiconductor process integration and their applications, Journal of Applied Physics 129(10) (2021).
    [2] K.S. Ramadan, D. Sameoto, S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers, Smart Materials and Structures 23(3) (2014) 033001.
    [3] M.P. Dicker, A.B. Baker, R.J. Iredale, S. Naficy, I.P. Bond, C.F. Faul, J.M. Rossiter, G.M. Spinks, P.M. Weaver, Light-triggered soft artificial muscles: Molecular-level amplification of actuation control signals, Scientific reports 7(1) (2017) 9197.
    [4] K. Guk, G. Han, J. Lim, K. Jeong, T. Kang, E.-K. Lim, J. Jung, Evolution of wearable devices with real-time disease monitoring for personalized healthcare, Nanomaterials 9(6) (2019) 813.
    [5] T. Vijayakanth, D.J. Liptrot, E. Gazit, R. Boomishankar, C.R. Bowen, Recent advances in organic and organic–inorganic hybrid materials for piezoelectric mechanical energy harvesting, Advanced Functional Materials 32(17) (2022) 2109492.
    [6] K. Asadi, Organic ferroelectric materials and applications, Woodhead Publishing2021.
    [7] S. Guerin, S.A. Tofail, D. Thompson, Organic piezoelectric materials: milestones and potential, NPG Asia Materials 11(1) (2019) 10.
    [8] J. Kim, J.H. Lee, H. Ryu, J.H. Lee, U. Khan, H. Kim, S.S. Kwak, S.W. Kim, High‐performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P (VDF‐TrFE) with controlled crystallinity and dipole alignment, Advanced Functional Materials 27(22) (2017) 1700702.
    [9] D. Braga, L. Maini, F. Grepioni, Crystallization from hydrochloric acid affords the solid-state structure of croconic acid (175 years after its discovery) and a novel hydrogen-bonded network, CrystEngComm 3(6) (2001) 27-29.
    [10] W.J. Hu, D.-M. Juo, L. You, J. Wang, Y.-C. Chen, Y.-H. Chu, T. Wu, Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films, Scientific reports 4(1) (2014) 4772.
    [11] L.L. da Silva, M. Hinterstein, Size Effect on Ferroelectricity in Nanoscaled BaTiO3, Technological Applications of Nanomaterials (2022) 123-133.
    [12] S. Horiuchi, R. Kumai, Y. Tokura, Hydrogen‐bonding molecular chains for high‐temperature ferroelectricity, Advanced Materials 23(18) (2011) 2098-2103.
    [13] K. Kobayashi, S. Horiuchi, R. Kumai, F. Kagawa, Y. Murakami, Y. Tokura, Electronic ferroelectricity in a molecular crystal with large polarization directing antiparallel to ionic displacement, Physical review letters 108(23) (2012) 237601.
    [14] S. Horiuchi, K. Kobayashi, R. Kumai, S. Ishibashi, Ionic versus electronic ferroelectricity in donor–acceptor molecular sequences, Chemistry Letters 43(1) (2014) 26-35.
    [15] E. Ferrari, F. Mezzadri, M. Masino, Temperature-induced neutral-to-ionic phase transition of the charge-transfer crystal tetrathiafulvalene-fluoranil, Physical Review B 105(5) (2022) 054106.
    [16] C. Catlow, A. Stoneham, Ionicity in solids, Journal of Physics C: Solid State Physics 16(22) (1983) 4321.
    [17] S. Horiuchi, S. Ishibashi, Hydrogen-bonded small-molecular crystals yielding strong ferroelectric and antiferroelectric polarizations, Journal of the Physical Society of Japan 89(5) (2020) 051009.
    [18] S. Mohapatra, S. Cherifi-Hertel, S.K. Kuppusamy, G. Schmerber, J. Arabski, B. Gobaut, W. Weber, M. Bowen, V. Da Costa, S. Boukari, Organic ferroelectric croconic acid: a concise survey from bulk single crystals to thin films, Journal of Materials Chemistry C 10(21) (2022) 8142-8167.
    [19] D. Di Sante, A. Stroppa, S. Picozzi, Structural, electronic and ferroelectric properties of croconic acid crystal: a DFT study, Physical Chemistry Chemical Physics 14(42) (2012) 14673-14681.
    [20] S. Mukhopadhyay, M. Gutmann, F. Fernandez-Alonso, Hydrogen-bond structure and anharmonicity in croconic acid, Physical Chemistry Chemical Physics 16(47) (2014) 26234-26239.
    [21] Y. Cai, S. Luo, Z. Zhu, H. Gu, Ferroelectric mechanism of croconic acid: A first-principles and Monte Carlo study, The Journal of chemical physics 139(4) (2013).
    [22] S. Horiuchi, K. Kobayashi, R. Kumai, S. Ishibashi, Proton tautomerism for strong polarization switching, Nature communications 8(1) (2017) 14426.
    [23] V.V. Zhurov, A.A. Pinkerton, Charge Density Analysis of an Organic Ferroelectric. Croconic Acid: an Experimental and Theoretical Study, Zeitschrift für anorganische und allgemeine Chemie 639(11) (2013) 1969-1978.
    [24] K. Kobayashi, S. Horiuchi, S. Ishibashi, F. Kagawa, Y. Murakami, R. Kumai, Structure–Property Relationship of Supramolecular Ferroelectric [H‐66dmbp][Hca] Accompanied by High Polarization, Competing Structural Phases, and Polymorphs, Chemistry–A European Journal 20(52) (2014) 17515-17522.
    [25] S. Koval, J. Kohanoff, J. Lasave, G. Colizzi, R. Migoni, First-principles study of ferroelectricity and isotope effects in H-bonded KH2PO4 crystals, Physical Review B 71(18) (2005) 184102.
    [26] S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, Y. Tokura, Above-room-temperature ferroelectricity in a single-component molecular crystal, Nature 463(7282) (2010) 789-792.
    [27] A.K. Tagantsev, L.E. Cross, J. Fousek, Domains in ferroic crystals and thin films, Springer2010.
    [28] F. Kagawa, S. Horiuchi, N. Minami, S. Ishibashi, K. Kobayashi, R. Kumai, Y. Murakami, Y. Tokura, Polarization switching ability dependent on multidomain topology in a uniaxial organic ferroelectric, Nano letters 14(1) (2014) 239-243.
    [29] S. Mohapatra, E. Beaurepaire, W. Weber, M. Bowen, S. Boukari, V. Da Costa, Accessing nanoscopic polarization reversal processes in an organic ferroelectric thin film, Nanoscale 13(46) (2021) 19466-19473.
    [30] S. Mohapatra, V. Da Costa, G. Avedissian, J. Arabski, W. Weber, M. Bowen, S. Boukari, Robust ferroelectric properties of organic croconic acid films grown on spintronically relevant substrates, Materials Advances 1(3) (2020) 415-420.
    [31] S. Horiuchi, F. Kagawa, K. Hatahara, K. Kobayashi, R. Kumai, Y. Murakami, Y. Tokura, Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles, Nature Communications 3(1) (2012) 1308.
    [32] M. Hasegawa, N. Kobayashi, S. Uemura, T. Kamata, Memory mechanism of printable ferroelectric TFT memory with tertiary structured polypeptide as a dielectric layer, Synthetic metals 159(9-10) (2009) 961-964.
    [33] J.-H. Bae, S.-H. Chang, Characterization of an electroactive polymer (PVDF-TrFE) film-type sensor for health monitoring of composite structures, Composite Structures 131 (2015) 1090-1098.
    [34] M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing—process and its applications, Advanced materials 22(6) (2010) 673-685.
    [35] R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature 389(6653) (1997) 827-829.
    [36] H. Gau, S. Herminghaus, P. Lenz, R. Lipowsky, Liquid morphologies on structured surfaces: from microchannels to microchips, Science 283(5398) (1999) 46-49.
    [37] Y. Diao, L. Shaw, Z. Bao, S.C. Mannsfeld, Morphology control strategies for solution-processed organic semiconductor thin films, Energy & Environmental Science 7(7) (2014) 2145-2159.
    [38] Y. Noda, T. Yamada, K. Kobayashi, R. Kumai, S. Horiuchi, F. Kagawa, T. Hasegawa, Few‐Volt Operation of Printed Organic Ferroelectric Capacitor, Advanced Materials 27(41) (2015) 6475-6481.
    [39] A.K. Tagantsev, I. Stolichnov, E. Colla, N. Setter, Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features, Journal of Applied Physics 90(3) (2001) 1387-1402.
    [40] X. Lou, M. Zhang, S. Redfern, J. Scott, Local phase decomposition as a cause of polarization fatigue in ferroelectric thin films, Physical review letters 97(17) (2006) 177601.
    [41] D. Zhao, I. Katsouras, M. Li, K. Asadi, J. Tsurumi, G. Glasser, J. Takeya, P.W. Blom, D.M. De Leeuw, Polarization fatigue of organic ferroelectric capacitors, Scientific reports 4(1) (2014) 5075.
    [42] M. Do, N. Gauquelin, M. Nguyen, J. Wang, J. Verbeeck, F. Blom, G. Koster, E. Houwman, G. Rijnders, Interfacial dielectric layer as an origin of polarization fatigue in ferroelectric capacitors, Scientific reports 10(1) (2020) 7310.
    [43] T. Tybell, P. Paruch, T. Giamarchi, J.-M. Triscone, Domain Wall Creep in Epitaxial Ferroelectric Pb(Zr0.2Ti0.8)O3 Thin Films, Physical review letters 89(9) (2002) 097601.

    無法下載圖示 校內:2028-08-23公開
    校外:2028-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE