簡易檢索 / 詳目顯示

研究生: 許育祥
Hsu, Yu-Hsiang
論文名稱: 介白素二十在類風濕性關節炎致病機轉中的角色
Interleukin-20 is involved in the pathogenesis of rheumatoid arthritis
指導教授: 張明熙
Chang, Ming-Shi
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 65
中文關鍵詞: 介白素二十關節纖維母細胞細胞激素類風濕性關節炎
外文關鍵詞: synovial fibroblast, cytokine, interleukin-20, rheumatoid arthritis
相關次數: 點閱:138下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    類風濕性關節炎(rheumatoid arthritis; RA)屬於一種慢性發炎疾病,罹患率佔全球總人口數的百分之一。RA會引起關節液增多,白血球浸潤及關節變形等發炎反應。細胞激素於發炎過程中扮演極重要的角色,可促使發炎反應更加嚴重並造成關節的損傷。文獻指出介白素-20(interleukin-20; IL-20)可促進角質細胞(keratinocytes)表現促發炎細胞激素 (pro-inflammatory cytokine),因此我們想探討IL-20是否也參與RA的致病過程。研究利用酵素連結免疫吸附分析法(enzyme-linked immunosorbent assay),偵測RA、骨關節炎(osteoarthritis)及痛風(gout)患者之關節液中IL-20含量,結果發現RA患者之關節液中,可偵測到高含量的IL-20。利用免疫組織化學染色法(immunohistochemical staining)則可偵測到RA患者關節膜(synovial membrane)以及關節纖維母細胞 (synovial fibroblast)中,皆會表現IL-20與其接受器,因此我們推測關節纖維母細胞對於IL-20參與RA致病過程應扮演一個重要的角色。此外,IL-20也會作用在RA患者之關節纖維母細胞上,促使其表現大量的IL-6、IL-8及MCP-1等細胞激素。利用增生試驗與細胞移行實驗(migration assay)可進一步得知,IL-20促使內皮細胞增生,同時伴隨會趨化嗜中性白血球至關節組織,並趨使關節纖維母細胞的移行。利用第二型膠原蛋白來建立大鼠關節炎之動物模式,經由反轉錄-聚合酶連鎖反應(RT-PCR),可偵測到關節炎大鼠的關節組織以及關節纖維母細胞中會表現IL-20與其接受器,但正常大鼠並不表現IL-20與IL-20R1。此外,TNF-��n也會作用在關節炎大鼠的關節纖維母細胞上,促使關節炎大鼠的關節纖維母細胞表現大量的IL-20。最後利用基因療法將構築在載體上的可溶性接受器(sIL-20R1或sIL-20R2),以電擊(electroporation)的方式送入關節炎大鼠之大腿肌肉內,結果可有效地預防大鼠關節炎的發生。綜合以上的研究結果顯示,在RA患者的關節液中表現高含量的IL-20,同時IL-20也是一種化學趨化物質(chemokine),其可趨化嗜中性白血球與關節纖維母細胞的移行,並促使內皮細胞的增生。最後利用關節炎動物模式更進一步證實,可溶性IL-20接受器,可顯著改善關節炎的嚴重程度。因此,IL-20在RA病程中調控著一些重要的分子,並在其致病機轉中扮演著非常重要的角色。

    ABSTRACT
    The pathogenesis of rheumatoid arthritis (RA) reflects an ongoing imbalance between pro- and anti-inflammatory cytokines. Interleukin-20 (IL-20) has pro-inflammatory properties for keratinocytes. We wanted to determine whether IL-20 was involved in RA. Using ELISA, we demonstrated that RA patients expressed significantly higher levels of IL-20 in synovial fluid than did gout or osteoarthritis patients. IL-20 and its receptors were consistently expressed in the synovial membranes and synovial fibroblasts of RA patients (RASFs) and it acted on RASFs through the ERK 1/2 signal transduction pathway. The effect of IL-20 on endothelial cells, RASFs, and neutrophils was investigated using MTT and the migration assay. The result showed that IL-20 induced RASFs to secrete monocyte chemoattractant protein-1 (MCP-1), IL-6, and IL-8, and it promoted neutrophil chemotaxis and the proliferation of endothelial cells in vitro. The expression of rat IL-20 and its receptors in healthy and collagen-induced arthritis (CIA) rats was analyzed and compared. Both IL-20 and IL-20R1 were upregulated in the rat CIA model. Rat IL-20 was upregulated by TNF-�-stimulated in SFs derived from CIA was demonstrated using RT-PCR. We used intramuscular electroporation to deliver soluble (s)IL-20R1 or sIL-20R2 into CIA rats and monitored the severity of arthritis in vivo. Electroporated sIL-20R1 plasmid DNA significantly decreased the severity of arthritis in CIA rats. These data indicated that IL-20 is upregulated in the synovial fluid of RA patients and acts as a chemokine that attracts migration of neutrophils, SFs, and promotes proliferation of endothelial cells. The rat CIA model further demonstrated that IL-20 is involved in the pathogenesis of arthritis because sIL-20R1 effectively reduced arthritis in CIA rats. Thus, IL-20 regulated several crucial molecules in RA and might play multiple roles in the pathogenesis of RA.

    Contents Chinese Abstract……………………………………………………………………… I English Abstract…………………………………………………………………….... III Acknowledgement…………………………………………………………………….. IV Abbreviations…………………………………………………………………………. VI Contents……………………………………………………………………………….. VII Contents of Table…………………………………………………………………….. X Contents of Figure…………………………………………………………………… XI I INTRODUCTION………………………………………………………………….. 1 1. Rheumatoid arthritis……………………………………………………………….. 1 1.1 Histological changes…………………………………………………………... 1 1.2 Angiogenesis and RA…………………………………………………………. 2 2. Cytokines………………………………………………………………………… 3 3. Antagonist of cytokines…………………………………………………………… 4 4. IL-10 family………………………………………………………………………. 5 5. Interleukin-20 (IL-20)…………………………………………………………….. 6 6. Collagen-induced arthritis (CIA) animal model………………………………….. 7 7. Gene therapy………………………………………………………………………. 8 II SPECIFIC AIMS………………………………………………………………….. 9 III MATERIALS AND METHODS…………………………………………………. 10 1. Patients…………………………………………………………………………….. 10 2. Isolation and culture of SFs……………………………………………………….. 11 3. Endothelial cell culture……………………………………………………………. 11 4. ELISA for IL-20 in synovial fluid, serum, and conditional medium……………… 11 5. Generation of mouse monoclonal antibody against human IL-20R2…………… 12 6. Immunohistochemistry (IHC) staining of synovial membranes from RA patients and CIA rats………………………………………………………….. 12 7. Immunocytochemical staining of RASFs…………………………………………. 13 8. Activation of ERK 1/2 in RASFs using Western blotting…………………………. 13 9. Isolation of full-length cDNA clones for rat IL-20, IL-20R1, and IL-20R2………. 13 10. Expression and purification of rat IL-20 recombinant protein…………………… 14 11. Cell proliferation assay…………………………………………………………... 14 12. ELISA analysis of MCP-1, IL-6, IL-8, and IL-20 in conditioned medium……… 15 13. Neutrophil preparation…………………………………………………………… 15 14. T-cell preparation………………………………………………………………… 16 15. Chemotaxis and migration assays……………………………………………….. 16 16. CIA induction and assessment of severity………………………………………. 17 17. RT-PCR detection of IL-20 and its receptors transcripts in rats…………………. 18 18. Upregulation of rat IL-20 by TNF- in SFs derived from CIA rat……………… 18 19. Intramuscular electroporation of rat IL-20R1 and IL-20R2 plasmid……………. 19 20. Statistical analysis……………………………………………………………….. 19 IV RESULTS…………………………………………………………………………. 20 1. IL-20 levels in synovial fluid were significantly higher in RA patients than in OA patients…………………………………………………………………………….. 20 2. Expression of IL-20 and its receptors in the synovial membranes and SFs of RA patients…………………………………………………………………………….. 20 3. IL-20 activated ERK 1/2 in RASFs……………………………………………….. 21 4. Interaction of cytokines and chemokines in RASFs………………………………. 22 5. IL-20 induced neutrophil chemotaxis and RASF migration in vitro……………… 22 6. Identification of rat IL-20 and its receptors……………………………………….. 22 7. CIA in rat animal model........................................................................................... 23 8. Expression of IL-20 and its receptors in the synovial tissue of CIA rats………….. 23 9. IL-20 induced proliferation of HUVEC…………………………………………… 24 10. Upregulation of rat IL-20 by TNF- in SFs derived from CIA and healthy rat…. 24 11. IHC of IL-20 and its receptors in the synovial membranes of CIA rat………….. 25 12. Electroporation of rat IL-20R1 plasmid DNA prevented CIA in rat…………….. 25 13. Radiologic evaluation of bones and joints……………………………………….. 26 V DISCUSSION……………………………………………….……………………… 27 VI REFERENCES……………………………………………….…………………… 32 VII TABLE……………………………………………………………………………. 39 VIII FIGURE…………………………………………………………………………. 40 IX APPENDIX………………………………………………………………………... 64 1. Publication…………………………………………….………………………… 64 X BIOGRAPHICAL NOTE……………………………………………………..…... 65 Contents of Table Table l. Primer pairs used for amplifying rat transcripts…………………………... 39 Contents of Figure Figure 1. IL-20 is overexpressed in the synovial fluid of RA patients…………….. 40 Figure 2. Immunostaining of RA synovial membranes…………………………….. 41 Figure 3. Immunostaining of RASFs………………………………………………. 42 Figure 4. IL-20 activated ERK 1/2 in RASFs……………………………………… 43 Figure 5. IL-20 is involved in the cytokine cascade of RA………………………… 44 Figure 6. IL-20 promoted neutrophil chemotaxis analyzed by Boyden chamber….. 45 Figure 7. IL-20 promoted RASF migration analyzed by Boyden chamber………... 46 Figure 8. Comparison of human, mouse, and rat IL-20 and their receptors……….. 50 Figure 9. CIA in rat animal model............................................................................. 51 Figure 10. Differential expression of IL-20 and its receptors in synovial tissue between rats with CIA and healthy rats………………………………….. 52 Figure 11. Differential expression of IL-20 and its receptors in SFs between rats with CIA and healthy rats………………………………………………... 53 Figure 12. Expression and purification of rat IL-20 recombinant protein…………... 54 Figure 13. IL-20 induced the proliferation of HUVEC……………………………… 55 Figure 14. Upregulation of rat IL-20 by TNF- in SFs derived from CIA rat………. 56 Figure 15. Upregulation of rat IL-20 by TNF- in SFs derived from healthy rat…... 57 Figure 16. Immunostaining of synovial membranes derived from CIA rat…………. 58 Figure 17. Construction of rat IL-20R1, IL-20R2, and IL-22R1 plasmid DNA…….. 59 Figure 18. sIL-20R1 inhibited CIA in rats…………………………………………... 60 Figure 19. sIL-20R1 prevented hind paws swelling in CIA rats…………………..... 61 Figure 20. Radiographs of the gross appearance of the hind paws in CIA rats……... 62 Figure 21. IL-20 is involved in the pathogenesis of RA…………………………….. 63

    1. Lee DM, Weinblatt ME. Rheumatoid arthritis. Lancet 2001;358(9285):903-11.
    2. Yamanishi Y, Firestein GS. Pathogenesis of rheumatoid arthritis: the role of synoviocytes. Rheum Dis Clin North Am 2001;27(2):355-71.
    3. Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 1996;14:397-440.
    4. Panayi GS, Lanchbury JS, Kingsley GH. The importance of the T cell in initiating and maintaining the chronic synovitis of rheumatoid arthritis. Arthritis Rheum 1992;35(7):729-35.
    5. Firestein GS, Zvaifler NJ. How important are T cells in chronic rheumatoid synovitis?: II. T cell-independent mechanisms from beginning to end. Arthritis Rheum 2002;46(2):298-308.
    6. Wipke BT, Allen PM. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J Immunol 2001;167(3):1601-8.
    7. Girard JP, Springer TA. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol Today 1995;16(9):449-57.
    8. Shiozawa S, Shiozawa K, Fujita T. Morphologic observations in the early phase of the cartilage-pannus junction. Light and electron microscopic studies of active cellular pannus. Arthritis Rheum 1983;26(4):472-8.
    9. McCachren SS, Haynes BF, Niedel JE. Localization of collagenase mRNA in rheumatoid arthritis synovium by in situ hybridization histochemistry. J Clin Immunol 1990;10(1):19-27.
    10. Gravallese EM, Darling JM, Ladd AL, Katz JN, Glimcher LH. In situ hybridization studies of stromelysin and collagenase messenger RNA expression in rheumatoid synovium. Arthritis Rheum 1991;34(9):1076-84.
    11. Kobayashi I, Ziff M. Electron microscopic studies of the cartilage-pannus junction in rheumatoid arthritis. Arthritis Rheum 1975;18(5):475-83.
    12. Lafyatis R, Remmers EF, Roberts AB, Yocum DE, Sporn MB, Wilder RL. Anchorage-independent growth of synoviocytes from arthritic and normal joints. Stimulation by exogenous platelet-derived growth factor and inhibition by transforming growth factor-beta and retinoids. J Clin Invest 1989;83(4):1267-76.
    13. FitzGerald O, Soden M, Yanni G, Robinson R, Bresnihan B. Morphometric analysis of blood vessels in synovial membranes obtained from clinically affected and unaffected knee joints of patients with rheumatoid arthritis. Ann Rheum Dis 1991;50(11):792-6.
    14. Koch AE. Review: angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum 1998;41(6):951-62.
    15. Wood NC, Dickens E, Symons JA, Duff GW. In situ hybridization of interleukin-1 in CD14-positive cells in rheumatoid arthritis. Clin Immunol Immunopathol 1992;62(3):295-300.
    16. Chu CQ, Field M, Feldmann M, Maini RN. Localization of tumor necrosis factor alpha in synovial tissues and at the cartilage-pannus junction in patients with rheumatoid arthritis. Arthritis Rheum 1991;34(9):1125-32.
    17. Cope AP, Aderka D, Doherty M, Engelmann H, Gibbons D, Jones AC, et al. Increased levels of soluble tumor necrosis factor receptors in the sera and synovial fluid of patients with rheumatic diseases. Arthritis Rheum 1992;35(10):1160-9.
    18. Arend WP, Malyak M, Smith MF, Jr., Whisenand TD, Slack JL, Sims JE, et al. Binding of IL-1 alpha, IL-1 beta, and IL-1 receptor antagonist by soluble IL-1 receptors and levels of soluble IL-1 receptors in synovial fluids. J Immunol 1994;153(10):4766-74.
    19. Haak-Frendscho M, Marsters SA, Mordenti J, Brady S, Gillett NA, Chen SA, et al. Inhibition of TNF by a TNF receptor immunoadhesin. Comparison to an anti-TNF monoclonal antibody. J Immunol 1994;152(3):1347-53.
    20. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001;19:683-765.
    21. Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR. Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science 1990;248(4960):1230-4.
    22. Thompson-Snipes L, Dhar V, Bond MW, Mosmann TR, Moore KW, Rennick DM. Interleukin 10: a novel stimulatory factor for mast cells and their progenitors. J Exp Med 1991;173(2):507-10.
    23. Rousset F, Garcia E, Defrance T, Peronne C, Vezzio N, Hsu DH, et al. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci U S A 1992;89(5):1890-3.
    24. Go NF, Castle BE, Barrett R, Kastelein R, Dang W, Mosmann TR, et al. Interleukin 10, a novel B cell stimulatory factor: unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp Med 1990;172(6):1625-31.
    25. Gallagher G, Dickensheets H, Eskdale J, Izotova LS, Mirochnitchenko OV, Peat JD, et al. Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun 2000;1(7):442-50.
    26. Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T, Carollo S, et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 2001;104(1):9-19.
    27. Dumoutier L, Louahed J, Renauld J-C. Cloning and Characterization of IL-10-Related T Cell-Derived Inducible Factor (IL-TIF), a Novel Cytokine Structurally Related to IL-10 and Inducible by IL-9. J Immunol 2000;164(4):1814-1819.
    28. Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 1995;11(12):2477-86.
    29. Knappe A, Hor S, Wittmann S, Fickenscher H. Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J Virol 2000;74(8):3881-7.
    30. Liao YC, Liang WG, Chen FW, Hsu JH, Yang JJ, Chang MS. IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J Immunol 2002;169(8):4288-97.
    31. Liao SC, Cheng YC, Wang YC, Wang CW, Yang SM, Yu CK, et al. IL-19 induced Th2 cytokines and was up-regulated in asthma patients. J Immunol 2004;173(11):6712-8.
    32. Dumoutier L, Van Roost E, Colau D, Renauld JC. Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc Natl Acad Sci U S A 2000;97(18):10144-9.
    33. Radaeva S, Sun R, Pan HN, Hong F, Gao B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 2004;39(5):1332-42.
    34. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the innate immunity of tissues. Immunity 2004;21(2):241-54.
    35. Hor S, Pirzer H, Dumoutier L, Bauer F, Wittmann S, Sticht H, et al. The T-cell lymphokine interleukin-26 targets epithelial cells through the interleukin-20 receptor 1 and interleukin-10 receptor 2 chains. J Biol Chem 2004;279(32):33343-51.
    36. Sheikh F, Baurin VV, Lewis-Antes A, Shah NK, Smirnov SV, Anantha S, et al. Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. J Immunol 2004;172(4):2006-10.
    37. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989;170(6):2081-95.
    38. Bogdan C, Vodovotz Y, Nathan C. Macrophage deactivation by interleukin 10. J Exp Med 1991;174(6):1549-55.
    39. de Waal Malefyt R, Abrams J, Bennett B, Figdor C, de Vries J. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 1991;174(5):1209-1220.
    40. Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ. Shaping gene expression in activated and resting primary macrophages by IL-10. J Immunol 2002;169(5):2253-63.
    41. Cassatella MA, Meda L, Bonora S, Ceska M, Constantin G. Interleukin 10 (IL-10) inhibits the release of proinflammatory cytokines from human polymorphonuclear leukocytes. Evidence for an autocrine role of tumor necrosis factor and IL-1 beta in mediating the production of IL-8 triggered by lipopolysaccharide. J Exp Med 1993;178(6):2207-11.
    42. Cush JJ, Splawski JB, Thomas R, McFarlin JE, Schulze-Koops H, Davis LS, et al. Elevated interleukin-10 levels in patients with rheumatoid arthritis. Arthritis Rheum 1995;38(1):96-104.
    43. al-Janadi M, al-Dalaan A, al-Balla S, al-Humaidi M, Raziuddin S. Interleukin-10 (IL-10) secretion in systemic lupus erythematosus and rheumatoid arthritis: IL-10-dependent CD4+CD45RO+ T cell-B cell antibody synthesis. J Clin Immunol 1996;16(4):198-207.
    44. Walmsley M, Katsikis PD, Abney E, Parry S, Williams RO, Maini RN, et al. Interleukin-10 inhibition of the progression of established collagen-induced arthritis. Arthritis Rheum 1996;39(3):495-503.
    45. Finnegan A, Kaplan CD, Cao Y, Eibel H, Glant TT, Zhang J. Collagen-induced arthritis is exacerbated in IL-10-deficient mice. Arthritis Res Ther 2003;5(1):R18-24.
    46. Katsikis PD, Chu CQ, Brennan FM, Maini RN, Feldmann M. Immunoregulatory role of interleukin 10 in rheumatoid arthritis. J Exp Med 1994;179(5):1517-27.
    47. Zdanov A, Schalk-Hihi C, Gustchina A, Tsang M, Weatherbee J, Wlodawer A. Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon gamma. Structure 1995;3(6):591-601.
    48. Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC. Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 2001;167(7):3545-9.
    49. Parrish-Novak J, Xu W, Brender T, Yao L, Jones C, West J, et al. Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem 2002;277(49):47517-23.
    50. Wolk K, Kunz S, Asadullah K, Sabat R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol 2002;168(11):5397-402.
    51. Rich BE. IL-20: a new target for the treatment of inflammatory skin disease. Expert Opin Ther Targets 2003;7(2):165-74.
    52. Liu L, Ding C, Zeng W, Heuer JG, Tetreault JW, Noblitt TW, et al. Selective enhancement of multipotential hematopoietic progenitors in vitro and in vivo by IL-20. Blood 2003;102(9):3206-9.
    53. Hsieh MY, Chen WY, Jiang MJ, Cheng BC, Huang TY, Chang MS. Interleukin-20 promotes angiogenesis in a direct and indirect manner. Genes Immun 2006;7(3):234-42.
    54. Trentham DE, Townes AS, Kang AH. Autoimmunity to type II collagen an experimental model of arthritis. J Exp Med 1977;146(3):857-68.
    55. Durie FH, Fava RA, Noelle RJ. Collagen-induced arthritis as a model of rheumatoid arthritis. Clin Immunol Immunopathol 1994;73(1):11-8.
    56. Klareskog L, Holmdahl R, Larsson E, Wigzell H. Role of T lymphocytes in collagen II induced arthritis in rats. Clin Exp Immunol 1983;51(1):117-25.
    57. Williams RO, Feldmann M, Maini RN. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci U S A 1992;89(20):9784-8.
    58. Bendele AM, Chlipala ES, Scherrer J, Frazier J, Sennello G, Rich WJ, et al. Combination benefit of treatment with the cytokine inhibitors interleukin-1 receptor antagonist and PEGylated soluble tumor necrosis factor receptor type I in animal models of rheumatoid arthritis. Arthritis Rheum 2000;43(12):2648-59.
    59. van den Berg WB, Joosten LA, Helsen M, van de Loo FA. Amelioration of established murine collagen-induced arthritis with anti-IL-1 treatment. Clin Exp Immunol 1994;95(2):237-43.
    60. Bendele A, McAbee T, Sennello G, Frazier J, Chlipala E, McCabe D. Efficacy of sustained blood levels of interleukin-1 receptor antagonist in animal models of arthritis: comparison of efficacy in animal models with human clinical data. Arthritis Rheum 1999;42(3):498-506.
    61. Takagi N, Mihara M, Moriya Y, Nishimoto N, Yoshizaki K, Kishimoto T, et al. Blockage of interleukin-6 receptor ameliorates joint disease in murine collagen-induced arthritis. Arthritis Rheum 1998;41(12):2117-21.
    62. Campbell IK, O'Donnell K, Lawlor KE, Wicks IP. Severe inflammatory arthritis and lymphadenopathy in the absence of TNF. J Clin Invest 2001;107(12):1519-27.
    63. Aihara H, Miyazaki J. Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 1998;16(9):867-70.
    64. Dupuis M, Denis-Mize K, Woo C, Goldbeck C, Selby MJ, Chen M, et al. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 2000;165(5):2850-8.
    65. Horton HM, Anderson D, Hernandez P, Barnhart KM, Norman JA, Parker SE. A gene therapy for cancer using intramuscular injection of plasmid DNA encoding interferon alpha. Proc Natl Acad Sci U S A 1999;96(4):1553-8.
    66. Mathiesen I. Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther 1999;6(4):508-14.
    67. Li S, Zhang X, Xia X, Zhou L, Breau R, Suen J, et al. Intramuscular electroporation delivery of IFN-alpha gene therapy for inhibition of tumor growth located at a distant site. Gene Ther 2001;8(5):400-7.
    68. Lee SC, Wu CJ, Wu PY, Huang YL, Wu CW, Tao MH. Inhibition of established subcutaneous and metastatic murine tumors by intramuscular electroporation of the interleukin-12 gene. J Biomed Sci 2003;10(1):73-86.
    69. Chen WY, Cheng YC, Lei HY, Chang CP, Wang CW, Chang MS. IL-24 inhibits the growth of hepatoma cells in vivo. Genes Immun 2005;6:493-9.
    70. Heuze-Vourc'h N, Liu M, Dalwadi H, Baratelli FE, Zhu L, Goodglick L, et al. IL-20, an anti-angiogenic cytokine that inhibits COX-2 expression. Biochem Biophys Res Commun 2005;333(2):470-5.
    71. Wei CC, Chen WY, Chen PJ, Lee YJ, Wang DH, Chen WC, et al. Detection of IL-20 and its receptors on psoriasis skin. Clin Immunol 2005;117(1):65-72.
    72. Tada M, Inui K, Koike T, Takaoka K. Use of local electroporation enhances methotrexate effects with minimum dose in adjuvant-induced arthritis. Arthritis Rheum 2005;52(2):637-41.
    73. Ikeuchi H, Kuroiwa T, Hiramatsu N, Kaneko Y, Hiromura K, Ueki K, et al. Expression of interleukin-22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. Arthritis Rheum 2005;52(4):1037-46.
    74. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003;423(6937):356-61.
    75. Schett G, Tohidast-Akrad M, Smolen JS, Schmid BJ, Steiner CW, Bitzan P, et al. Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-JUN N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum 2000;43(11):2501-12.
    76. Brennan FM, Zachariae CO, Chantry D, Larsen CG, Turner M, Maini RN, et al. Detection of interleukin 8 biological activity in synovial fluids from patients with rheumatoid arthritis and production of interleukin 8 mRNA by isolated synovial cells. Eur J Immunol 1990;20(9):2141-4.
    77. Koch AE, Kunkel SL, Burrows JC, Evanoff HL, Haines GK, Pope RM, et al. Synovial tissue macrophage as a source of the chemotactic cytokine IL-8. J Immunol 1991;147(7):2187-95.
    78. Seitz M, Dewald B, Gerber N, Baggiolini M. Enhanced production of neutrophil-activating peptide-1/interleukin-8 in rheumatoid arthritis. J Clin Invest 1991;87(2):463-9.
    79. Villiger PM, Terkeltaub R, Lotz M. Production of monocyte chemoattractant protein-1 by inflamed synovial tissue and cultured synoviocytes. J Immunol 1992;149(2):722-7.
    80. Koch AE, Kunkel SL, Harlow LA, Johnson B, Evanoff HL, Haines GK, et al. Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J Clin Invest 1992;90(3):772-9.
    81. Rathanaswami P, Hachicha M, Sadick M, Schall TJ, McColl SR. Expression of the cytokine RANTES in human rheumatoid synovial fibroblasts. Differential regulation of RANTES and interleukin-8 genes by inflammatory cytokines. J Biol Chem 1993;268(8):5834-9.
    82. Koch AE, Kunkel SL, Harlow LA, Mazarakis DD, Haines GK, Burdick MD, et al. Macrophage inflammatory protein-1 alpha. A novel chemotactic cytokine for macrophages in rheumatoid arthritis. J Clin Invest 1994;93(3):921-8.
    83. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 1995;270(45):27348-57.
    84. Fickenscher H, Hor S, Kupers H, Knappe A, Wittmann S, Sticht H. The interleukin-10 family of cytokines. Trends Immunol 2002;23(2):89-96.

    下載圖示
    2009-07-31公開
    QR CODE