簡易檢索 / 詳目顯示

研究生: 高郁雯
Kao, Yu-Wen
論文名稱: 胎兒DNA片段比例的貝氏估計量之統計評估
Statistical Evaluation for Bayes’ Estimator of Fetal DNA Fraction
指導教授: 馬瀰嘉
Ma, Mi-Chia
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 41
中文關鍵詞: 次世代基因定序非侵入性胎兒染色體基因檢測胎兒DNA 片段比例貝氏估計量廣義卜瓦松分佈
外文關鍵詞: NGS, NIPT, fetal DNA fraction, Bayesian estimator, generalized Poisson distribution
相關次數: 點閱:93下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著次世代DNA定序技術與生物演算技術的興起,造就了產前非侵入性胎兒染色體基因檢測(Noninvasive Prenatal Test,簡稱NIPT)在臨床上廣泛的應用,NIPT所引發的風險相較於早期侵入性檢測方法低,因NIPT僅透過抽取孕婦血樣,取得胎兒在孕婦血液中微量的游離DNA,以檢測胎兒是否患有染色體異常之疾病的可能。再者,因非侵入性胎兒染色體基因檢測需透過估計母親血漿中胎兒DNA片段比例(Fetal DNA Fraction)作為篩檢依據,故本研究將評估五種方法之參數估計量的表現。

    我們以Jiang et al.(2012)的統計方法與Jiang et al.(2016)的測序想法作為出發點,然而在真實資料中,如果FDP(Flow Evaluator Read Depth at the Locus)讀數過小或胎兒DNA片段濃度極低時,比對到參考序列的讀數FRO(Flow Evaluator Reference allele observations)會無法顯現以致不被納入計算,導致以往的估計量有所偏差,故我們主要是利用貝氏估計量來計算胎兒DNA片段比例。最後,本研究將透過統計模擬來評估幾種胎兒 DNA 片段比例估計量的表現,並以成功大學分子醫學研究所孫孝芳教授提供的資料作為實例來說明各種估計方法的結果。

    With progress in next-generation sequencing (NGS), the non-invasive prenatal test (NIPT) of fetal chromosomes has been widely used in clinical medicine. The risk of NIPT is lower than invasive detection methods because NIPT obtains an amount of cell-free DNA in maternal plasma to detect whether the fetus is chromosomal abnormalities. Furthermore, the NIPT needs to estimate fetal DNA fraction as the screening basis. We will compare the performance of parameter estimates in the five methods.

    If the reads count of flow evaluator read depth at the locus (FDP) or the fetal DNA fraction is too small, the reads count of flow evaluator reference allele observations (FRO) will not be observed and calculated and leads to estimated deviations. Therefore, we used Bayesian estimation to calculate the fetal DNA fraction. Finally, we will evaluate the performance of estimate for fetal DNA fraction by statistical simulations and use the data provided by Dr. H. Sunny Sun from the Institute of Molecular Medicine at the National Cheng Kung University as an example to illustrate the results of estimation methods.

    摘要i 英文延伸摘要ii 誌謝vii 目錄viii 表目錄ix 圖目錄x 第一章. 緒論1 1.1. 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. 研究架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 第二章. 文獻回顧4 2.1. 標準估計量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2. 胎兒分數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3. 低測序深度之胎兒分數. . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4. 廣義卜瓦松分配. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 第三章. 統計方法10 第四章. 實例分析與統計模擬13 4.1. 實例分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2. 統計模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2.1. 模擬過程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2.2. 模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2.3. 估計誤差. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 第五章. 結論與未來展望31 5.1. 結論與未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2. 建議與研究限制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 參考文獻34 附錄A. 38

    [1] ACOG (2012). Noninvasive prenatal testing for fetal aneuploidy. committee opinion no.545. Obstet Gynecol, 120(6):1532–1534.
    [2] ACOG (2015). Cell-free DNA screening for fetal aneuploidy. committee opinion no.640. Obstet Gynecol, 126(3):e31–e37.
    [3] Ashoor, G., Poon, L., Syngelaki, A., Mosimann, B., and Nicolaides, K. H. (2012). Fetal fraction in maternal plasma cell-free DNA at 11–13 weeks’ gestation: effect of maternal and fetal factors. Fetal diagnosis and therapy, 31(4):237–243.
    [4] Ashoor, G., Syngelaki, A., Poon, L., Rezende, J., and Nicolaides, K. (2013). Fetal fraction in maternal plasma cell-free DNA at 11–13 weeks’ gestation: relation to maternal and fetal characteristics. Ultrasound in Obstetrics & Gynecology, 41(1):26–32.
    [5] Bianchi, D. W., Parker, R. L., Wentworth, J., Madankumar, R., Saffer, C., Das, A. F., Craig, J. A., Chudova, D. I., Devers, P. L., Jones, K. W., et al. (2014). DNA sequencing versus standard prenatal aneuploidy screening. New England journal of medicine,
    370(9):799–808.
    [6] Chen, S., Lau, T. K., Zhang, C., Xu, C., Xu, Z., Hu, P., Xu, J., Huang, H., Pan, L., Jiang, F., et al. (2013). A method for noninvasive detection of fetal large deletions/duplications by low coverage massively parallel sequencing. Prenatal diagnosis, 33(6):584–590.
    [7] Chiu, R. W., Akolekar, R., Zheng, Y. W., Leung, T. Y., Sun, H., Chan, K. A., Lun, F. M., Go, A. T., Lau, E. T., To, W. W., et al. (2011). Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. Bmj, 342:c7401.
    [8] Consul, P. C. and Jain, G. C. (1973). A generalization of the Poisson distribution. Technometrics, 15(4):791–799.
    [9] Dan, S., Wang, W., Ren, J., Li, Y., Hu, H., Xu, Z., Lau, T. K., Xie, J., Zhao, W., Huang, H., et al. (2012). Clinical application of massively parallel sequencing-based prenatal noninvasive fetal trisomy test for trisomies 21 and 18 in 11,105 pregnancies with mixed risk factors. Prenatal diagnosis, 32(13):1225–1232.
    [10] Ehrich, M., Deciu, C., Zwiefelhofer, T., Tynan, J. A., Cagasan, L., Tim, R., Lu, V., McCullough, R., McCarthy, E., Nygren, A. O., et al. (2011). Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. American Journal of Obstetrics & Gynecology, 204(3):205.e201–205.e211.
    [11] Gross, S., Stosic, M., McDonald-McGinn, D., Bassett, A., Norvez, A., Dhamankar, R., Kobara, K., Kirkizlar, E., Zimmermann, B., Wayham, N., et al. (2016). Clinical experience with single-nucleotide polymorphism-based non-invasive prenatal screening for 22q11.2 deletion syndrome. Ultrasound in Obstetrics & Gynecology, 47(2):177–183.
    [12] Hudecova, I., Sahota, D., Heung, M. M., Jin, Y., Lee, W. S., Leung, T. Y., Lo, Y. M. D., and Chiu, R. W. (2014). Maternal plasma fetal DNA fractions in pregnancies with low and high risks for fetal chromosomal aneuploidies. PloS one, 9(2):e88484.
    [13] Jiang, P., Chan, K. A., Liao, G. J., Zheng, Y. W., Leung, T. Y., Chiu, R. W., Lo, Y. M. D., and Sun, H. (2012). FetalQuant: deducing fractional fetal DNA concentration from massively parallel sequencing of DNA in maternal plasma. Bioinformatics, 28(22):2883–2890.
    [14] Jiang, P., Peng, X., Su, X., Sun, K., Stephanie, C., Chu, W. I., Leung, T. Y., Sun, H., Chiu, R. W., Lo, Y. M. D., et al. (2016). FetalQuantSD: accurate quantification of fetal DNA fraction by shallow-depth sequencing of maternal plasma DNA. NPJ genomic
    medicine, 1:16013.
    [15] Lau, T. K., Chan, M. K., Salome Lo, P. S., Connie Chan, H. Y., Kim Chan, W. S., Koo, T. Y., Ng, H. Y. J., and Pooh, R. K. (2012). Clinical utility of noninvasive fetal trisomy (NIFTY) test–early experience. The Journal of Maternal-Fetal & Neonatal Medicine,
    25(10):1856–1859.
    [16] Lau, T. K., Jiang, F., Chan, M. K., Zhang, H., Salome Lo, P. S., and Wang, W. (2013). Non-invasive prenatal screening of fetal Down syndrome by maternal plasma DNA sequencing in twin pregnancies. The Journal of Maternal-Fetal & Neonatal Medicine,
    26(4):434–437.
    [17] Lo, Y. D., Chan, K. A., Sun, H., Chen, E. Z., Jiang, P., Lun, F. M., Zheng, Y. W., Leung, T. Y., Lau, T. K., Cantor, C. R., et al. (2010). Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Science translational medicine, 2(61):61ra91.
    [18] Lo, Y. D., Corbetta, N., Chamberlain, P. F., Rai, V., Sargent, I. L., Redman, C. W., and Wainscoat, J. S. (1997). Presence of fetal DNA in maternal plasma and serum. The lancet, 350(9076):485–487.
    [19] Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 9:387–402.
    [20] Norton, M. E., Brar, H., Weiss, J., Karimi, A., Laurent, L. C., Caughey, A. B., Rodriguez, M. H., Williams, J., Mitchell, M. E., Adair, C. D., et al. (2012). Non-invasive chromosomal evaluation (NICE) study: results of a multicenter prospective cohort study
    for detection of fetal trisomy 21 and trisomy 18. American Journal of Obstetrics & Gynecology, 207(2):137.e1–137.e8.
    [21] Norton, M. E., Jacobsson, B., Swamy, G. K., Laurent, L. C., Ranzini, A. C., Brar,
    H., Tomlinson, M. W., Pereira, L., Spitz, J. L., Hollemon, D., et al. (2015). Cell-free DNA analysis for noninvasive examination of trisomy. New England Journal of Medicine, 372(17):1589–1597.
    [22] Palomaki, G. E., Kloza, E. M., Lambert-Messerlian, G. M., Haddow, J. E., Neveux, L. M., Ehrich, M., van den Boom, D., Bombard, A. T., Deciu, C., Grody, W. W., et al. (2011). DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genetics in medicine, 13(11):913–920.
    [23] Rava, R. P., Srinivasan, A., Sehnert, A. J., and Bianchi, D. W. (2014). Circulating fetal cell-free DNA fractions differ in autosomal aneuploidies and monosomy X. Clinical chemistry, 60(1):243–250.
    [24] Shi, X., Zhang, Z., Cram, D. S., and Liu, C. (2015). Feasibility of noninvasive prenatal testing for common fetal aneuploidies in an early gestational window. Clinica Chimica Acta, 439:24–28.
    [25] Xu, X. P., Gan, H. Y., Li, F. X., Tian, Q., Zhang, J., Liang, R. L., Li, M., Yang, X. X., and Wu, Y. S. (2016). A method to quantify cell-free fetal DNA fraction in maternal plasma using next generation sequencing: its application in non-invasive prenatal chromosomal
    aneuploidy detection. PloS one, 11(1):e0146997.
    [26] Zhang, H., Gao, Y., Jiang, F., Fu, M., Yuan, Y., Guo, Y., Zhu, Z., Lin, M., Liu, Q., Tian, Z., et al. (2015a). Non-invasive prenatal testing for trisomies 21, 18 and 13: clinical experience from 146,958 pregnancies. Ultrasound in Obstetrics & Gynecology, 45(5):530–538.
    [27] Zhang, H., Zhao, Y. Y., Song, J., Zhu, Q. Y., Yang, H., Zheng, M. L., Xuan, Z. L., Wei, Y., Chen, Y., Yuan, P. B., et al. (2015b). Statistical approach to decreasing the error rate of noninvasive prenatal aneuploid detection caused by maternal copy number variation. Scientific reports, 5:16106.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE