簡易檢索 / 詳目顯示

研究生: 使惠哪
Sari, Octavina Novita
論文名稱: 混合導性氧化物作為鋰空氣電池正極之研究
Effect of Mixed Conducting Oxide as Catalytic Cathode for Lithium Oxygen Battery
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 尖端材料國際碩士學位學程
International Curriculum for Advanced Materials Program
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 59
外文關鍵詞: Lithium Oxygen Battery, Catalyst, Perovskite
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The lithium oxygen batteries have received wide attention as an enabling technology for a mass market entry of electric vehicles due to a potential capacity much higher than current Li-ion technology. Carbon has been used widely as the basis of porous cathodes for non-aqueous Li−O2 cells, produce Li2O2 as the main product that electrically insulative and would passivate the cathode, cause very high charge-discharge overpotential which will make kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) more sluggish, then compromise the capacity and cycle life. Therefore, seeking effective electrocatalyst to reduce the overpotential is crucial to enhance the performance of lithium oxygen batteries. Mixed conducting oxides have been regarded as the most promising materials due to high electrical conductivity and high electrocatalytic activity for the ORR and OER activity. BaxSr1-xCoyFe1-yO3-δ that exhibit defective structures for oxygen vacancy, excellent oxygen anion mobility and exchange kinetics make it excellent candidate as cathode electrocatalyst. Herein, perovskite BaxSr1-xCoyFe1-yO3-δ use as cathode catalyst can increase the discharge capacity from 2705 mAh/g into 5988 mAh/g at 0.1 mA/cm2 and improve cycle stability from 16 cycle to 26 cycle at 0.1 mA/cm2 with limited capacity 1000 mAh/g. (Ni,Co) Oxide added Carbon-BSCF mixture to improve electronic conductivity, increase capacity into 8420 mAh/g
    Keywords : Lithium Oxygen Battery, Catalyst, Perovskite

    Contents Abstract ii List Of Figure v List Of Table vii CHAPTER 1 INTRODUCTION 1 1.1 Preface 1 1.2 Research Objectives and Motivation 3 CHAPTER 2 THEORITICAL BACKGROUND 5 2.1 Lithium Oxygen Battery 5 2.1.1 Aqueous Lithium Oxygen Battery 6 2.1.2 Aprotic / Non – Aqueous Lithium Oxygen Battery 8 2.2 Non Aqueous Lithium Air Battery Electrolytes 10 2.3 Air Electrode (Cathode) for Lithium Oxygen Batteries 12 2.4 Perovskite Oxide 16 2.5 Spinel-Type Oxides 18 2.6 Metal Oxides as Catalyst in Li-O2 Battery 20 CHAPTER 3 EXPERIMENTAL PROCEDURE 22 3.1 Material 22 3.2 Sample Preparation 23 3.2.1 Preparation of BaxSr1-xCoyFe1-yO3-δ 23 3.2.2 Preparation of (Ni,Co) Oxide 24 3.2.3 Preparation of Air Electrode 25 3.2.4 Preparation of Electrolyte 28 3.3 Battery Assembling 28 3.4 Characterization and Measurement. 29 3.4.1 X-Ray Diffraction (XRD) 29 3.4.2 Particle Size Analyzer 30 3.4.3 Scanning Electron Microscope (SEM) 30 3.4.4 Fourier Transformed Infrared (FT-IR) 30 3.4.5 Cyclic Voltammogram and Linear Sweep Voltammogram (CV-LSV) 31 3.4.6 Battery Testing 31 CHAPTER 4 RESULT AND DISCUSSION 32 4.1 BaxSr1-xCoyFe1-yO3-δ Characteristic 32 4.2 Air Electrode Preparation. 33 4.3 Ratio of BaxSr1-xCoyFe1-yO3-δ as Lithium Oxygen Battery Cathode 35 4.4 The electrocatalytic activity of BaxSr1-xCoyFe 1-yO3-δ 37 4.5 The electrocatalytic activity of (Ni,Co) Oxide 54 CHAPTER 5 CONCLUSION 57 REFERENCES 58

    REFERENCES

    1. Lu, J., et al., Aprotic and Aqueous Li–O2 Batteries. Chemical Reviews, 2014. 114(11): p. 5611-5640.
    2. Tan, P., et al., Advances and challenges in lithium-air batteries. Applied Energy, 2017. 204: p. 780-806.
    3. Girishkumar, G., et al., Lithium−Air Battery: Promise and Challenges. The Journal of Physical Chemistry Letters, 2010. 1(14): p. 2193-2203.
    4. Tan, P., et al., Recent Advances in Perovskite Oxides as Electrode Materials for Nonaqueous Lithium–Oxygen Batteries. Adv. Energy Mater. , 2017. 7(1602674).
    5. Laoire, C.O., et al., Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications. The Journal of Physical Chemistry C, 2009. 113(46): p. 20127-20134.
    6. Suntivich, J., et al., A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science, 2011. 334(6061): p. 1383-1385.
    7. Fang, L., The Preparation and Electrochemical Properties of Perovskite La0.6Sr0.4CoO3-d for Catalytic Reduction of Oxygen. Int. J. Electrochem. Sci., , 2017. 12: p. 218-229.
    8. Kowalczk, I., J. Read, and M. Salomon, Li-Air batteries: A classic example of limitations owing to solubilities. Pure Appl. Chem, 2007. 79(5): p. 851–860.
    9. Jung, K.-N., et al., Rechargeable lithium–air batteries: a perspective on the development of oxygen electrodes. Journal of Materials Chemistry A, 2016. 4(37): p. 14050-14068.
    10. Zhu, X.B., et al., A novel solid-state Li–O2 battery with an integrated electrolyte and cathode structure. Energy & Environmental Science, 2015. 8(9): p. 2782-2790.
    11. Zhu, X., et al., A high-performance solid-state lithium-oxygen battery with a ceramic-carbon nanostructured electrode. Nano Energy, 2016. 26: p. 565-576.
    12. Kuboki, T., et al., Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. Journal of Power Sources, 2005. 146(1): p. 766-769.
    13. Yang, X.-h., P. He, and Y.-y. Xia, Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochemistry Communications, 2009. 11(6): p. 1127-1130.
    14. Ma, Z., et al., A review of cathode materials and structures for rechargeable lithium–air batteries. Energy & Environmental Science, 2015. 8(8): p. 2144-2198.
    15. Read, J., Characterization of the Lithium/Oxygen Organic Electrolyte Battery. J. Electrochem. Soc. 2002 2002. 149(9): p. A1190-A1195.
    16. Yang, X.-h. and Y.-y. Xia, The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery. J Solid State Electrochem (2010) 14: 109. , 2010. 14: p. 109.
    17. Park, C.K., et al., Electrochemical Performances of Lithium-air Cell with Carbon Materials. Bulletin of the Korean Chemical Society, 2010. Volume 31(Issue 11): p. pp.3221-3224.
    18. Xiao, J., et al., Optimization of Air Electrode for Li/Air Batteries. J. Electrochem. Soc., 2010, 157, 2010. 157: p. A487–A492.
    19. Geng, D., et al., Non-noble metal oxygen reduction electrocatalysts based on carbon nanotubes with controlled nitrogen contents. Journal of Power Sources, 2011. 196(4): p. 1795-1801.
    20. Crowther, O., et al., Primary Li-air cell development. Journal of Power Sources, 2011. 196(3): p. 1498-1502.
    21. Lu, Y.-C., et al., Platinum−Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium−Air Batteries. Journal of the American Chemical Society, 2010. 132(35): p. 12170-12171.
    22. Cheng, H. and K. Scott, Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. Journal of Power Sources, 2010. 195(5): p. 1370-1374.
    23. Xiao, J., et al., Optimization of Air Electrode for Li/Air Batteries. J. Electrochem. Soc. 2002, 2010. 157: p. A487–A492.
    24. Zhang, S.S., D. Foster, and J. Read, Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. Journal of Power Sources, 2010. 195(4): p. 1235-1240.
    25. McCloskey, B.D., et al., Limitations in Rechargeability of Li-O2 Batteries and Possible Origins. The Journal of Physical Chemistry Letters, 2012. 3(20): p. 3043-3047.
    26. McCloskey, B.D., et al., Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O2 Batteries. The Journal of Physical Chemistry Letters, 2012. 3(8): p. 997-1001.
    27. Ottakam Thotiyl, M.M., et al., The Carbon Electrode in Nonaqueous Li–O2 Cells. Journal of the American Chemical Society, 2013. 135(1): p. 494-500.
    28. Wang, Z.-L., et al., Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews, 2014. 43(22): p. 7746-7786.
    29. Suntivich, J., et al., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chemistry, 2011. 3: p. 546.
    30. Osgood, H., et al., Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 2016. 11(5): p. 601-625.
    31. He, X., F. Yin, and G. Li, A Co/metal–organic-framework bifunctional electrocatalyst: The effect of the surface cobalt oxidation state on oxygen evolution/reduction reactions in an alkaline electrolyte. International Journal of Hydrogen Energy, 2015. 40(31): p. 9713-9722.
    32. Cheng, J., et al., Perovskite La0.6Sr0.4Co0.2Fe0.8O3 as an effective electrocatalyst for non-aqueous lithium air batteries. Electrochimica Acta, 2016. 191: p. 106-115.
    33. Lyu, Z., et al., Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li–O2 batteries. Chemical Society Reviews, 2017. 46(19): p. 6046-6072.
    34. Mahne, N., et al., Mechanism and performance of lithium–oxygen batteries – a perspective. Chemical Science, 2017. 8(10): p. 6716-6729.
    35. Adams, B.D., et al., Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy & Environmental Science, 2013. 6(6): p. 1772-1778.
    36. Zhang, X., et al., Porous Perovskite La0.6Sr0.4Co0.8Mn0.2O3 Nanofibers Loaded with RuO2 Nanosheets as an Efficient and Durable Bifunctional Catalyst for Rechargeable Li–O2 Batteries. ACS Catalysis, 2017. 7(11): p. 7737-7747.
    37. Black, R., et al., Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization. Journal of the American Chemical Society, 2012. 134(6): p. 2902-2905.

    下載圖示 校內:2024-02-01公開
    校外:2024-02-01公開
    QR CODE