簡易檢索 / 詳目顯示

研究生: 王建智
Wang, Chien-Chih
論文名稱: 光學活性單體對高分子穩定化膽固醇液晶膜之誘導研究
Applications of Novel Chiral Monomers on Polymer Stabilized Cholesteric Textures Films
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 98
中文關鍵詞: 光學活性單體膽固醇液晶雙官能性單體
外文關鍵詞: chiral monomer, cholesteric liquid crystal, difunctional monomer
相關次數: 點閱:87下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用高分子穩定膽固醇液晶薄膜並探討其光電特性。本實驗合成之雙官能性單體如下4,4’-bis ( 6-(acryloyloxy) hexyloxy) biphenyl、1,4-di- [4-(6-acryloyloxyhexyloxy) benzoyloxy] benzene、1,4-di- [4-(6-acryloyloxyhexyloxy) benzoyloxy] -2-methyl benzene、1,4-di- [4-(6-acryloyloxyhexyloxy) benzoyloxy] biphenyl,及新穎性光學活性單體如下4-myrtenylphenyl-4’- (6-acryloyloxyhexyloxy) benzoate、4-menthylphenyl-4’- (6-acryloyloxyhexyloxy) benzoate、(R)-(-)-4- (6-acryloyloxyhexyloxy) benzoyloxy methyl mandelate、(S)-(+)-4- (6-acryloyloxyhexyloxy) benzoyloxy methyl mandelate。所合成之化合物均使用FTIR、1H-NMR、DSC等儀器來鑑定其結構及物性。在本論文中,首先探討雙官能性單體之架橋能力,然後選擇較合適之雙官能性單體4,4’-bis ( 6-(acryloyloxy) hexyloxy) biphenyl作為架橋劑。另外,將液晶ZLI-2293與光學活性摻混物R811及S811分別加入後,製作成右旋性及左旋性之膽固醇液晶,再分別添加入不同配方及比例之光學活性單體,發現鏡像異構物在右旋性及左旋性之膽固醇液晶中的關係,是對稱且關係密切。而其濃度效應和照光聚合後對膽固醇液晶主體之選擇性光反射波段變寬及移轉之影響在本文中也都有詳細探討。最後製作成PSCT顯示元件探討其電壓與穿透度之間的關係,也都具有相當良好之特性。

    To stabilize the cholesteric liquid crystal in polymer matrixes, a series of difunctional monomers of 4,4’-bis(6-(acryloyloxy) hexyloxy) biphenyl, 1,4-di- [4-(6-acryloyloxyhexyloxy) benzoyloxy] benzene, 1,4-di- [4-(6-acryloyloxyhexyloxy) benzoyloxy] -2-methyl benzene, and 1,4-di- [4-(6-acryloyloxyhexyloxy) benzoyloxy] biphenyl with various mesogenic core, chiral monomers of 4-myrtenylphenyl-4’- (6-acryloyloxyhexyloxy) benzoate, 4-menthylphenyl-4’- (6-acryloyloxyhexyloxy) benzoate, (R)-(-)- 4-(6-acryloyloxyhexyloxy) benzoyloxy methyl mandelate, and (S)-(+)-4- (6-acryloyloxyhexyloxy) benzoyloxy methyl mandelate was synthesized. Compounds synthesized in this investigation were identified using FTIR, 1H-NMR, and DSC. To investigate the electro-optical properties of polymer stabilized cholesteric texture (PSCT) liquid crystal cell, the difunctional monomers were mixed with Nematic liquid crystal ZLI-2293, chiral dopants R811 or S811, and a photoinitiator namely benzoin methyl ether (BME). The mixture was poured into an ITO cell and then irradiated by UV light for a certain period. Effect of achiral and chiral monomers on the reflected bandwidth, the shift of the central wavelength, the morphologies of polymer matrixes and the dependence of transmittance on voltage of cholesteric liquid crystal cells were also studied.

    中文摘要--------------------------------------------------------------------------- I 英文摘要--------------------------------------------------------------------------- II 目錄--------------------------------------------------------------------------------- III 表目錄------------------------------------------------------------------------------ VI 圖目錄------------------------------------------------------------------------------ VII 符號表------------------------------------------------------------------------------ XI 第一章 緒論---------------------------------------------------------------------- 1 1-1 液晶簡介--------------------------------------------------------------------- 1 1-2 液晶分類--------------------------------------------------------------------- 3 1-3 研究動機--------------------------------------------------------------------- 11 第二章 原理---------------------------------------------------------------------- 12 2-1 小分子液晶化合物的分子結構------------------------------------------ 12 2-2 液晶的物理性質------------------------------------------------------------ 13 2-2-1 液晶的光學異方性---------------------------------------------------- 13 2-2-2 外加電場對絕緣向列型液晶的影響------------------------------- 16 2-2-3 液晶的連續體彈性形變理論---------------------------------------- 17 2-3 膽固醇型液晶之光學性質------------------------------------------------ 18 2-4膽固醇-向列型相變化效應------------------------------------------------ 20 2-5 液晶-聚合物混合薄膜之介紹-------------------------------------------- 21 2-5-1 PDLC 簡介-------------------------------------------------------------- 21 2-5-2 PSCT 的簡介及工作原理-------------------------------------------- 22 2-6光聚合反應------------------------------------------------------------------- 27 第三章 實驗部分---------------------------------------------------------------- 31 3-1 藥品--------------------------------------------------------------------------- 31 3-2 儀器---------------------------------------------------------------------------- 33 3-3 實驗步驟--------------------------------------------------------------------- 34 3-3-1 雙官能性單體之合成------------------------------------------------- 34 3-3-2 含光學活性單體之合成---------------------------------------------- 39 3-4 試品的製作------------------------------------------------------------------ 45 3-4-1 材料配方---------------------------------------------------------------- 45 3-4-2 玻片的清洗及空cell的製作---------------------------------------- 46 3-4-3 單體與與液晶混合液之光聚合相分離測試---------------------- 47 3-5 電壓-穿透度量測----------------------------------------------------------- 48 3-6 聚合物之SEM量測-------------------------------------------------------- 49 3-7 溶液配製的測試------------------------------------------------------------ 49 第四章 結果與討論------------------------------------------------------------- 51 4-1 單體的合成與鑑定--------------------------------------------------------- 51 4-1-1 雙官能性單體之合成------------------------------------------------- 51 4-1-2 光學活性單體之合成------------------------------------------------- 55 4-2 官能性單體之熱性質及液晶性探討------------------------------------ 59 4-3 不同之雙官能性單體對膽固醇液晶主體之影響--------------------- 66 4-4 膽固醇液晶主體與光學活性單體之相對含量對選擇性光反射之 影響--------------------------------------------------------------------------- 74 4-5 在鏡像之膽固醇液晶主體中添加入鏡像光學活性單體之探討----75 4-6 光學活性單體之添加對膽固醇液晶主體聚合之影響--------------- 83 4-7 PSCT之液晶顯示元件探討----------------------------------------------- 92 第五章 結論---------------------------------------------------------------------- 95 參考文獻--------------------------------------------------------------------------- 96 Legands to Tables Table 3-1 Physical properties of nematic LC (ZLI-2293). ------------------ 45 Table 3-2 Physical properties of chiral dopant. ------------------------------- 45 Table 3-3 Fabrication of sample cells. ----------------------------------------- 49 Table 4-1 Thermodynamic properties of difunctional monomers and chiral monomers..----------------------------------------------------- 65 Table 4-2 Fabrication of sample cells. ----------------------------------------- 66 Table 4-3 Cell composition and main reflection wavelength shift. -------- 74 Table 4-4 Variation on reflected bands of PSCT cells before and after UV irradiation. -------------------------------------------------------- 77 Table 4-5 Variation on reflected bands of PSCT cells before and after UV irradiation. -------------------------------------------------------- 77 Legands to Figures Fig. 1-1 Dependence of intermolecular-force on temperature with general compounds and liquid crystal compounds. ------------------------- 4 Fig. 1-2 Nematic liquid crystals. ----------------------------------------------- 5 Fig. 1-3 (a) Smectic liquid crystals and (b) Smectic A liquid crystals. ---- 6 Fig. 1-4 Sc liquid crystals. ------------------------------------------------------- 8 Fig. 1-5 Cholesterol structure. -------------------------------------------------- 8 Fig. 1-6 Cholesteric liquid crystals. -------------------------------------------- 9 Fig. 1-7 (a) Chemical structure of disc-like liquid crystals, (b) Columnar disc-like liquid crystals, and (c) Nematic disc-like liquid crystals. -------------------------------- 10 Fig. 2-1 Anisotropic properties of nematic liquid crystals. ----------------- 14 Fig. 2-2 Birefringence of liquid crystals. -------------------------------------- 14 Fig. 2-3 (a) Birefringence of nematic and smectic LCs, (b) Birefringence of cholesteric LCs. -------------------------------- 15 Fig. 2-4 Molecular alignments of LCs with different dielectric constant. ----------------------------------------------------------------- 16 Fig. 2-5 Deformation of Nematic liquid crystal. ----------------------------- 17 Fig. 2-6 Alignments of cholesteric liquid crystals. --------------------------- 19 Fig. 2-7 Phase transition of cholesteric liquid crystals.---------------------- 20 Fig. 2-8 Privacy window using a polymer dispersed liquid crystal film. - 21 Fig. 2-9 (a) Formation of PSCT normal mode, (b) Operation of PSCT normal mode. ------------------------------- 25 Fig. 2-10 (a) Formation of PSCT reverse mode, (b) Operation of PSCT reverse mode. ---------------------------- 26 Fig. 2-11 Schematic operation of PSCT cell (a) Reverse mode, (b) Normal mode. -------------------------------- 27 Fig. 2-12 Structure of difunctional monomers. ------------------------------- 28 Fig. 2-13 Structure of chiral monomers. --------------------------------------- 28 Fig. 2-14 Structure of initiator (BME) ----------------------------------------- 29 Fig. 2-15 UV-spectrum of initiator (BME). ----------------------------------- 30 Fig. 3-1 Structure of the host chiral dopant. ---------------------------------- 46 Fig. 3-2 Fabrication of cholesteric liquid crystal cells. ---------------------- 47 Fig. 3-3 Experimental setup for measurement of electric-optical properties. Amp: amplifier, A: attenuator, FG: function generator, H: sample holder, PD: photodiode. --------------------- 48 Fig. 4-1 IR spectrum and 1H-NMR spectrum of M1. ----------------------- 51 Fig. 4-2 IR spectrum and 1H-NMR spectrum of M2. ----------------------- 52 Fig. 4-3 IR spectrum and 1H-NMR spectrum of M4. ----------------------- 53 Fig. 4-4 IR spectrum and 1H-NMR spectrum of M5. ----------------------- 54 Fig. 4-5 IR spectrum and 1H-NMR spectrum of M6*.----------------------- 55 Fig. 4-6 IR spectrum and 1H-NMR spectrum of M7*.----------------------- 56 Fig. 4-7 IR spectrum and 1H-NMR spectrum of M8*.----------------------- 57 Fig. 4-8 IR spectrum and 1H-NMR spectrum of M9*.----------------------- 58 Fig. 4-9 DSC thermograms of M1. --------------------------------------------- 60 Fig. 4-10 DSC thermograms of M2. ------------------------------------------- 60 Fig. 4-11 DSC thermograms of M4. ------------------------------------------- 61 Fig. 4-12 DSC thermograms of M5. ------------------------------------------- 61 Fig. 4-13 POM texture of liquid crystalline (a) M2, (b) M4 and (c) M5. - 62 Fig. 4-14 DSC thermograms of M6*.------------------------------------------ 63 Fig. 4-15 DSC thermograms of M7*.------------------------------------------ 64 Fig. 4-16 DSC thermograms of M8*.------------------------------------------ 64 Fig. 4-17 DSC thermograms of M9*.------------------------------------------ 65 Fig. 4-18 Effect of UV irradiation on reflected bands with (a) M1, (b) M2, (c) M3, (d) M4 and (e) M5.------------------------------------------ 68 Fig. 4-19 Top view of polymer matrixes on (a) top strip (b) bottom strip. --------------------------------------------------------------------------- 69 Fig. 4-20 POM textures of cholesteric LC cell (a) before UV irradiation, and after UV irradiation for (b) 10, (c) 20 and (d) 30 minutes.----------------------------------------------------------------- 71 Fig. 4-21 POM textures of cholesteric LC cells after UV irradiation with (a) M1, (b) M2, (c) M3, (d) M4 and (e) M5.---------------------- 72 Fig. 4-22 Top view of polymer matrix with (a) M1, (b) M2, (c) M3, (d) M4 and (e) M5.------------------------------------------------------------- 73 Fig. 4-23 Concentration effect on reflected bands with (a) M6* and (b) M7*.---------------------------------------------------------------- 75 Fig. 4-24 Concentration effect on reflected bands with enantiomeric (a) M8* and (b) M9*.------------------------------------------------- 78 Fig. 4-25 Concentration effect on reflected bands with enantiomeric (a) M9* and (b) M8*.------------------------------------------------- 79 Fig. 4-26 Chiral effect on reflected bands of sample cells with enantiomeric R1 and S1. ------------------------------------------------------------- 80 Fig. 4-27 Chiral effect on reflected bands of sample cells with enantiomeric (a) R2/S2, (b) R3/S3, (c) R4/S4, (d) R5/S5. ---------------------- 81 Fig. 4-28 Chiral effect on reflected bands of sample cells with enantiomeric (a) R6/S6, (b) R7/S7, (c) R8/S8, (d) R9/S9. ---------------------- 82 Fig. 4-29 Top view of polymer matrixes on (a) top strip (b) bottom strip. --------------------------------------------------------------------------- 85 Fig. 4-30 Effect of enantioneric compounds on reflected bands with (a) R1, (b) R2, (c) R3, (d) R4 and (e) R5. ---------------------------------- 86 Fig. 4-31 UV Irradiation effect on reflected bands with (a) R6, (b) R7, (c) R8 and (d) R9. ---------------------------------------------------- 87 Fig. 4-32 Effect of enantioneric compounds on reflected bands with (a) S1, (b) S2, (c) S3, (d) S4 and (e) S5. --------------------------- 88 Fig. 4-33 UV Irradiation effect on reflected bands with (a) S6, (b) S7, (c) S8 and (d) S9. ----------------------------------------------------- 89 Fig. 4-34 UV irradiation effect on reflected bands with (a) R811 and (b) S811. ---------------------------------------------------------- 90 Fig. 4-35 Top view of polymer matrixes with (a) S1, (b) S2, (c) S3, (d) S4 and (e) S5. ------------------------------------------------------------- 91 Fig. 4-36 Appearance of PSCT samples with texture of (a) planar, (b) focal conic and (c) homeotropic states.----------------------------------- 93 Fig. 4-37 Optical behaviors of a cholesteric liquid crystal cell as a function of voltage. ------------------------------------------------------------- 94 Fig. 4-38 Dependence of absorption variation at 488nm on applied voltage. --------------------------------------------------------------------------- 94

    1. F. Reinitzer, Monatsh. Chem., Vol. 9, 421 (1888).
    2. O. Z. Lehmann, Phys. Chem., 4, 4621 (1889).
    3. 松本正一、角田市良合著,劉瑞祥譯,“液晶之基礎與應用”,國立編譯館出版。
    4. 蔡宗岳,“含光學活性單體PSCT液晶顯示元件之光電特性研究”,國立成功大學化工研究所碩士論文 (1999)。
    5. 蔡月娥, “雙官能機單體間隙長度對PSCT液晶顯示器光電特性效應之研究”,國立成功大學化工研究所碩士論文 (2000)。
    6. 尤舜宗,“高分子側鏈長度對PSCT液晶顯示器光電特性效應之研究”,國立成功大學化工研究所碩士論文 (2001)。
    7. 王宏宇,“含光學活性菠脂基液晶高分子之合成及其在光學元件上之應用研究”,國立成功大學化工研究所碩士論文 (2002)。
    8. 王素誼,“光異構性偶氮型液晶之合成及其光電特性探討” ,國立成功大學化工研究所碩士論文 (2002)。
    9. 楊博智,“含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討”,國立成功大學化工研究所碩士論文 (2003)。
    10. 吳阜蒼,光異構性偶氮苯衍生物之合成及其在液晶顯示元件及光記錄薄膜之應用研究,國立成功大學化工研究所碩士論文 (2004)
    11. 許惠晴,“光聚合性膽固醇型液晶元件之製備及光學特性研究”,國立成功大學化工研究所碩士論文 (2004)。
    12. 陳建志,“含樟腦衍生基光敏性側鏈型液晶高分子之合成及光學特性探討”,國立成功大學化工研究所碩士論文 (2005)。
    13. D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, V. Vill, ”Handbook of Liquid crystals”, Vol. 2a, 2b, Wiley-VCH, (1998).
    14. 中田一郎、堀文一,賴耿陽譯,”液晶製法與應用”,復漢出版社。
    15. 黃啟炎, “液晶-聚合物混合薄膜之光學二倍頻現象之研究” 國立成功大學物理研究所博士論文 (1997)。
    16. 湯宏東,“含環氧基鐵電性液晶體的合成及性質研究”國立成功大學化工研究所碩士論文 (1998)。
    17. H. S. Ktzerow, P.P. Crooker, Liq. Cryst., Vol. 13, Iss 1, 31 (1993)
    18. R. B. Meyer, Phys. Rec. Lett., Vol. 22, 918 (1996).
    19. D. Stewart and Corrie T, Polymer, Vol. 37, 3419 (1996).
    20. David Coates, J. Mater. Chem., Vol. 5, 2063 (1995).
    21. H. S. Kitzerow, Liq. Cryst., Vol. 16, 1 (1994).
    22. C. Hilsum, UK Patent, 1442360 (1976).
    23. L. Boutteiller, P.L. Barny, Liq. Cryst. 21, 157 (1996).
    24. Y. H. Fan, H. Ren, S. T. Wu, Appl. Phys. Lett., 82, 2945 (2003).
    25. L. Petti, P. Mormile, W. J. Blau, Opt. Las. Eng., 39, 369 (2003).
    26. P. S. Drzaic, J. Appl. Phys., 60, 2142 (1986).
    27. Y. H. Lin, H. Ren, S.T. Wu, Appl. Phys. Lett., 84, 4083 (2004).
    28. M. Boussoualem, F. Roussel, M. Ismaili, Phys. Rev. E, 69, 31702 (2004).
    29. James V. Crivello, Liq. Cryst., Vol. 3, No. 2, 235 (1988).
    30. 劉瑞祥著,“感光性高分子”,復文書局。
    31. M. Irie, Chem. Rev., vol. 100, 1683 (2000).
    32. H. Bouas-Laurent, H. Dürr, Pure Appl. Chem., Vol. 73, 639 (2001).
    33. H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem. B, Vol. 104, 7023 (2000).
    34. H. K. Lee, K. Doi, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, Polymer, Vol. 41, 1757 (2000).
    35. H. K. Lee, K. Doi, Hisako, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem. B, Vol. 104, 7023 (2000).
    36. H. Guillard, P. Sixou, L. Reboul, A. Perichaud, Polymer, Vol. 42, 9753 (2001).
    37. V. Shibaev, A. Bobrovsky, N. Boiko, Journal of Photochemistry and Photobiology A: Chemistry. Vol. 155, 3 (2003).
    38. J. H. Liu, H.U. Wang, J. App. Polymer Sci., Vol. 91, 789 (2004).
    39. K. Kürschner, P. Strohriegl, Liq. Cryst., Vol. 27, 1595 (2000).
    40. M. C. Artal, M. B. Ros, J. L. Serrano, Chem. Mater., Vol. 13, 2056 (2001).
    41. M. O’neill, S. M. Kelly, J. Phys. D: Appl. Phys., 33 R67 (2000).
    42. K. Ichimura, Chem. Rev., 1847 (2000).
    43. Z. Liang, H. Ming, Q. Zhang, J. Appl. Phys. Vol. 90, 5866 (2001).
    44. T. Yoshioka, T. Ogata, A. M. Zahangir, T. Nonaka, S. Kulihara, Liq. Cryst., Vol. 31, 15 (2004).
    45. G. Wang, M. Li, M. Yu, C. Guo, X. Chen, Liquid Crystals, Vol. 27, 867 (2000).

    下載圖示 校內:2008-07-31公開
    校外:2008-07-31公開
    QR CODE