簡易檢索 / 詳目顯示

研究生: 張恩碩
Chang, En-Shuo
論文名稱: 以 100 nm 原料粉末製備之高純度氧化鋁在無異常晶粒成長前的機械性質
Mechanical property of high purity alumina prepared with 100 nm starting powder and sintered without abnormal grain growth
指導教授: 黃啓原
Huang, Chi-Yuen
共同指導教授: 顏富士
Yen, Fu-Su
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 69
中文關鍵詞: 氧化鋁粉末陶瓷材料奈米顆粒二階段燒結機械強度
外文關鍵詞: Alumina powder, ceramic materials, nanoparticles, two-stage sintering, mechanical strength
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討採用粒徑 100 nm 原料粉末製成之 α(+θ)-Al2O3 生坯,以二階段燒結法製備微奈米級高純度氧化鋁於異常晶粒成長前的燒結行為與機械特性。
    採用的原料粉末係以晶徑 25 nm θ-Al2O3 粉末,以之壓坯,於溫度 1200°C下,不同持溫時間進行相變煅燒,生成 65-80% α-Al2O3 含量及剩 20-35% θ-Al2O3之 α(+θ)-Al2O3 生坯。此生坯中 α-Al2O3 及 θ-Al2O3 之晶徑分別為 50-100 nm 及30 nm。生坯密度接近 60% T.D.。之後摻雜 1000 ppm 的 Mg2+進行燒結,再進行 SEM、燒結體密度及硬度分析。異常晶粒成長建立在燒結體內直線晶界的比例(Straight edge percent, SEP)接近 100%及平均每顆晶粒的直線晶界數量(Straight edges/Grain, SEG)接近 6 條。確認燒結體皆在異常晶粒成長前的階段。
    結果顯示於不同二階段燒結條件下晶粒尺寸、相對密度與生坯的 α- Al2O3含量有關。相同燒結條件下,相對密度於 α- Al2O3 含量為 75±2.5%時會有最大值。於真空條件下以 T1 (1500℃)- T2 (1420℃)/ 6h 二階段燒結,相對密度為 99.9%,晶粒尺寸為 1.13 μm。此時燒結體內直線晶界的比例(SEP)< 100%及平均每顆晶粒的直線晶界數量(SEG)<6 條。
    機械特性僅探討燒結體的硬度(Vicker’s hardness),密度大於 95%T.D 硬度均可超過 25 GPa。當晶徑大於 0.4μm 後,同一晶徑下,提高陶瓷體的密度可使其硬度略升。對應於此,同一密度陶瓷體晶粒越小硬度越高。當密度大於 98.5%後,以硬度而言,微結構之完整性影響不彰,能維持細晶粒比再提高燒結體之相對密度,更具實質意義。.

    In this paper, the sintering behavior and mechanical properties of α(+θ)-Al2O3 green body made of starting powder with a particle size of 100 nm were investigated by a two-stage sintering method to prepare micro-nano-scale high-purity alumina before abnormal grain growth.
    The raw material powder is the θ-Al2O3 powder with a crystal diameter of 25 nm, which is compacted and subjected to phase transformation calcination at a temperature of 1200°C., the α(+θ)-Al2O3 green body with 65-80% α- Al2O3 content and remaining 20-35% θ-Al2O3 was produced. The crystal diameters of α- Al2O3 and θ-Al2O3 in this green body are 50-100 nm and 30 nm. The green density is close to 60% T.D. After that, doped 1000 ppm of Mg2+ for sintering, and then SEM, density and hardness analysis were performed. The abnormal grain growth is based on the straight edge percent (SEP) in the sintered body being close to 100% and the straight edges/Grain (SEG) being close to 6. It was confirmed that the sinter bodies were all at the stage before abnormal grain growth.The results show that the grain size and relative density are related to the α-Al2O3 content of the green body under different two-stage sintering conditions. Under the same sintering conditions, the relative density will have a maximum when the content of α- Al2O3 is 75±2.5%. It was sintered in two stages of T1 (1500℃)-T2 (1420℃)/6h under vacuum conditions, the relative density was 99.9%, and the grain size was 1.13 μm. At this time, the proportion of SEP is < 100% and the the SEG is< 6.The mechanical properties only discuss the Vicker's hardness of the sintered body, the density is greater than 95% T.D hardness can exceed 25 GPa. When the crystal diameter is greater than 0.4 μm, under the same crystal diameter, increasing the density of the ceramic body can slightly increase the hardness. Corresponding to this, the smaller the grain size of the ceramic body with the same density, the higher the hardness. When the density is greater than 98.5%, in terms of hardness, the integrity of the microstructure is not significantly
    affected, and it is more meaningful to maintain the fine grain ratio.

    摘要 I Extended abstract II 致謝 XIX 目錄 XXI 表目錄 XXIV 圖目錄 XXV 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 基礎理論及文獻回顧 3 2-1氧化鋁及其過渡相 3 2-1-1 氧化鋁的性質及應用 3 2-1-2 氧化鋁的相變 3 2-1-3 氧化鋁的結晶相 4 2-1-4 θ- 到α-Al2O3相轉換理論 6 2-1-5氧化鋁的晶粒成長與再結晶 8 2-2 聚乙二醇 (Polyethylene glycol, PEG) 分散原理 10 2-3 液相前驅物滲透法 11 2-4 MgO 對於氧化鋁燒結的影響 12 2-5 燒結機制 13 2-6 二階段燒結 (Two-step sintering, TSS) 16 2-7 機械性質 18 第三章 實驗設計與步驟 21 3-1實驗設計 21 3-2實驗流程 22 3-3 100 nm 晶粒α-Al2O3之高密度α(+θ)-Al2O3生坯製備[8] 23 3-4 確定二階段燒結溫度條件 27 3-5特性分析 28 3-5-1密度量測 28 3-5-2 粉末結晶相分析 28 3-5-3 α-Al2O3生成量定量分析 29 3-5-4 顯微結構觀察 30 3-5-6 硬度分析 32 第四章 結果與討論 33 4-1 多晶氧化鋁之DIL燒結收縮曲線分析 33 4-2 燒結體晶粒尺寸、相對密度與微結構之關係 35 4-2-1四組生坯樣品燒結體的晶粒尺寸、相對密度 35 4-2-2總體燒結體的晶粒尺寸、相對密度 45 4-3 總體燒結體的晶粒與晶界顯微結構分析 47 4-3-1晶粒尺寸與直線晶界關係 47 4-3-2燒結體密度與直線晶界關係 49 4-4 維氏硬度測試 51 4-4-1硬度與晶粒尺寸及相對密度關係 51 4-4-3硬度與燒結體中晶粒顆數關係 56 4-4-4本研究之硬度與文獻之硬度比較 58 第五章 結論 61 參考文獻 62 附錄 66

    [1] C. J. Szepesi and J. H. Adair, "High Yield Hydrothermal Synthesis of Nano‐Scale Zirconia and YTZP," Journal of the American Ceramic Society, vol. 94, no. 12, pp. 4239-4246, 2011.
    [2] G.-D. Sun, G.-H. Zhang, and K.-C. Chou, "An industrially feasible pathway for preparation of Mo nanopowder and its sintering behavior," International Journal of Refractory Metals and Hard Materials, vol. 84, p. 105039, 2019.
    [3] M. A. Meyers, A. Mishra, and D. J. Benson, "Mechanical properties of nanocrystalline materials," Progress in materials science, vol. 51, no. 4, pp. 427-556, 2006.
    [4] S. D. Skrovanek, S. SD, and B. RC, "Microhardness of a fine-grain-size Al2O3," 1979.
    [5] H. Gleiter, "Nanocrystalline materials," in Advanced Structural and Functional Materials: Springer, 1991, pp. 1-37.
    [6] A. Krell and D. Klaffke, "Effects of grain size and humidity on fretting wear in fine‐grained alumina, Al2O3/TiC, and zirconia," Journal of the American Ceramic Society, vol. 79, no. 5, pp. 1139-1146, 1996.
    [7] J. Koo, K. Hong, J. Park, and D. Shin, "Effect of grain size on transmittance and mechanical strength of sintered alumina," Materials Science and Engineering: A, vol. 374, no. 1-2, pp. 191-195, 2004.
    [8] 孫梓萱, "以 θ-Al2O3 與 PEG 混合模式製備 50 nm 晶粒 α-Al2O3 生坯及其燒結行為觀察," 2021.
    [9] 王志仁, "微晶粒氧化鋁陶瓷體之製備與機械性質," 2008.
    [10] A. Krell and P. Blank, "Grain size dependence of hardness in dense submicrometer alumina," Journal of the American Ceramic Society, vol. 78, no. 4, pp. 1118-1120, 1995.
    [11] K. Shinozaki, Y. Ishikura, K. Uematsu, N. Mizutani, and M. Kato, "Vickers micro-hardness of solid solution in the system Cr2O3-Al2O3," Journal of Materials Science, vol. 15, no. 5, pp. 1314-1316, 1980.
    [12] 謝佳真, "以液相前驅物滲透法摻雜助燒結劑製備透光氧化鋁," 2018.
    [13] R. W. Rice, C. C. Wu, and F. Boichelt, "Hardness–grain‐size relations in ceramics," Journal of the American ceramic society, vol. 77, no. 10, pp. 2539-2553, 1994.
    [14] 黃雯巧, 黃姵文, 向性一, 黃啓原, and 顏富士, "奈米級晶粒 α-Al_2O_3 的生坯製作," 鑛冶: 中國鑛冶工程學會會刊, vol. 65, no. 4, pp. 76-81, 2021.
    [15] 黃姵文, "模擬θ-Al2O3@PEG核殼技術製作高密度細粒徑α-Al2O3生坯," 2002.
    [16] A. C. d. O. Lopes et al., "Microstructural, mechanical, and optical characterization of an experimental aging-resistant zirconia-toughened alumina (ZTA) composite," Dental Materials, vol. 36, no. 12, pp. e365-e374, 2020.
    [17] W. H. Gitzen, Alumina as a Ceramic Material. America: Wiley, 1970.
    [18] I. Levin and D. Brandon, "Metastable alumina polymorphs: crystal structures and transition sequences," Journal of the american ceramic society, vol. 81, no. 8, pp. 1995-2012, 1998.
    [19] T. Shirai, H. Watanabe, M. Fuji, and M. Takahashi, "Structural properties and surface characteristics on aluminum oxide powders," 2010.
    [20] K. Wefers and C. Misra, Oxides and hydroxides of aluminum. Alcoa Laboratories Pittsburgh, 1987.
    [21] L. D. Hart and E. Lense, Alumina chemicals: science and technology handbook. John Wiley & Sons, 1990.
    [22] S. Geller, "Crystal structure of β‐Ga2O3," The Journal of Chemical Physics, vol. 33, no. 3, pp. 676-684, 1960.
    [23] 楊榮澤, "奈米 α-Al2O3 晶粒之成長熱力學," 2009.
    [24] 張俊龍, "奈米級氧化鋁粉末 θ 至 α 的相轉換活化能研究," 2002.
    [25] P. Badkar and J. Bailey, "The mechanism of simultaneous sintering and phase transformation in alumina," Journal of Materials Science, vol. 11, no. 10, pp. 1794-1806, 1976.
    [26] 溫惠玲, "由Boehmite製得之氧化鋁粉末的θ→α-Al2O3相轉換," 2000.
    [27] S. Lamouri et al., "Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification," Boletín de la Sociedad Española de cerámica y vidrio, vol. 56, no. 2, pp. 47-54, 2017.
    [28] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics. John wiley & sons, 1976.
    [29] M. Hillert, "On the theory of normal and abnormal grain growth," Acta metallurgica, vol. 13, no. 3, pp. 227-238, 1965.
    [30] W. Tan and M. A. Bakar, "The effect of additives on the size of Fe3O4 particles," J. Phys. Sci, vol. 17, no. 2, pp. 37-50, 2006.
    [31] C. Vidyasagar and Y. A. Naik, "Surfactant (PEG 400) effects on crystallinity of ZnO nanoparticles," Arabian Journal of Chemistry, vol. 9, no. 4, pp. 507-510, 2016.
    [32] C.-W. Kwon, T.-S. Yoon, S.-S. Yim, S.-H. Park, and K.-B. Kim, "The effect of excess surfactants on the adsorption of iron oxide nanoparticles during a dip-coating process," Journal of Nanoparticle Research, vol. 11, no. 4, pp. 831-839, 2009.
    [33] D. Leila, L.-G. Mar, B. Fatima, N. Abddelyamine, B. Ali, and H. Nacereddine, "Effect of polyethylene glycol and propyltrimethoxysilane on structural and optical properties of zinc oxide nanoparticles synthesized by sol–gel process," Journal of Theoretical and Applied Physics, vol. 12, no. 3, pp. 159-167, 2018.
    [34] M. Xu, H. Xue, W. Y. Tin, H. Wang, Z. Yong, and Q. Wang, "Synergistic Effect by Polyethylene Glycol as Interfacial Modifier in Silane-Modified Silica-Reinforced Composites," Polymers, vol. 13, no. 5, p. 788, 2021.
    [35] 劉冠偉, 謝志鵬, and 吳音, "Application of Doping Ceramics via Infiltration on Translucent Alumina Ceramics,"無機材料學報, vol. 28, no. 4, pp. 375-380, 2013.
    [36] D. D. Chung, Carbon composites: composites with carbon fibers, nanofibers, and nanotubes. Butterworth-Heinemann, 2016.
    [37] B. R. Marple and D. J. Green, "Mullite/alumina particulate composites by infiltration processing," Journal of the American Ceramic Society, vol. 72, no. 11, pp. 2043-2048, 1989.
    [38] 劉冠偉, 謝志鵬, and 吳音, "Research progress of manipulating composition and properties of ceramics via liquid precursor infiltration technique,"無機材料學報, vol. 26, no. 11, pp. 1121-1128, 2011.
    [39] G. Tari, J. Ferreira, and O. Lyckfeldt, "Influence of magnesia on colloidal processing of alumina," Journal of the European Ceramic Society, vol. 17, no. 11, pp. 1341-1350, 1997.
    [40] W. C. Tu and F. F. Lange, "Liquid precursor infiltration processing of powder compacts: I, kinetic studies and microstructure development," Journal of the American Ceramic Society, vol. 78, no. 12, pp. 3277-3282, 1995.
    [41] R. L. Coble, "Transparent alumina and method of preparation," ed: Google Patents, 1962.
    [42] K. A. Berry and M. P. Harmer, "Effect of MgO solute on microstructure development in Al2O3," Journal of the American Ceramic Society, vol. 69, no. 2, pp. 143-149, 1986.
    [43] J. Powers and A. Glaeser, "Grain boundary migration in ceramics," Interface Science, vol. 6, no. 1, pp. 23-39, 1998.
    [44] K. Soni, A. Thompson, M. Harmer, D. Williams, J. Chabala, and R. Levi‐Setti, "Solute segregation to grain boundaries in MgO‐doped alumina," Applied physics letters, vol. 66, no. 21, pp. 2795-2797, 1995.
    [45] R. M. German, Sintering theory and practice. 1996.
    [46] M. N. Rahaman, Ceramic processing and sintering. CRC press, 2017.
    [47] M. Barsoum, Fundamentals of ceramics. CRC press, 2019.
    [48] F. J. Lin, L. C. De Jonghe, and M. N. Rahaman, "Microstructure refinement of sintered alumina by a two‐step sintering technique," Journal of the American Ceramic Society, vol. 80, no. 9, pp. 2269-2277, 1997.
    [49] R. L. Coble, "Sintering crystalline solids. I. Intermediate and final state diffusion models," Journal of applied physics, vol. 32, no. 5, pp. 787-792, 1961.
    [50] N. Lóh, L. Simão, C. Faller, A. De Noni Jr, and O. Montedo, "A review of two-step sintering for ceramics," Ceramics International, vol. 42, no. 11, pp. 12556-12572, 2016.
    [51] G. Mata-Osoro, J. S. Moya, and C. Pecharroman, "Transparent alumina by vacuum sintering," Journal of the European Ceramic Society, vol. 32, no. 11, pp. 2925-2933, 2012.
    [52] S. Yang, S. Yang, Y. Zhu, L. Fan, and M. Zhang, "Flash Sintering of dense alumina ceramic discs with high hardness," Journal of the European Ceramic Society, vol. 42, no. 1, pp. 202-206, 2022.
    [53] Y. Tamura, B. M. Moshtaghioun, D. Gomez-Garcia, and A. D. Rodríguez, "Spark plasma sintering of fine-grained alumina ceramics reinforced with alumina whiskers," Ceramics International, vol. 43, no. 1, pp. 658-663, 2017.
    [54] A. Krell and S. Schädlich, "Nanoindentation hardness of submicrometer alumina ceramics," Materials Science and Engineering: A, vol. 307, no. 1-2, pp. 172-181, 2001.
    [55] A. F. Rawle, Pharmaceutical Suspensions. America: Springer, 2010.

    無法下載圖示 校內:2026-08-23公開
    校外:2026-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE