簡易檢索 / 詳目顯示

研究生: 王偉欽
Wang, Wei-Chin
論文名稱: 雙氧水處理對ZnO薄膜及金半接觸特性影響之研究
Influence of hydrogen peroxide solution on properties of ZnO films and metal-semiconductor contact
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: MIS二極體雙氧水ZnO
外文關鍵詞: ZnO, hydrogen peroxide(H2O2), MIS diode
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ZnO 是一種寬能隙(3.37eV)半導體,且其在常溫下與ZnSe (22meV)和GaN (25meV)相較下具有較大的激子束縛能(60meV),這些優勢使得ZnO 在光電元件上將有較高的效率表現。因此,ZnO 在近年來被廣泛應用在發光二極體、雷射二極體、紫外光檢測器以及太陽能電池等。
    由於ZnO 在未摻雜的情況下將會形成n-type材料,對於p-n接面ZnO 要獲得高摻雜p-type上較為困難。因此我們以金屬-絕緣層-半導體結構取代常見的p-n接面型式的二極體。
    近年來,離子佈植與雙氧水濃液被利用來製備MIS 結構二極體中的絕緣層。在製作成本與實驗過程難易的考量下,雙氧水濃液與離子佈植相較下以雙氧水濃液來製備絕緣層是一個較好的選擇。所以我們利用雙氧水來使我們的ZnO 薄膜表面呈現絕緣性。將試片置於31%雙氧水溶液中,使其表面與雙氧水反應呈絕緣性,再以蒸鍍的方式鍍上電極,使其成為金屬-絕緣層-半導體結構,而未反應的ZnO 薄膜鍍上鈦鋁電極形成歐姆接觸,以HP4156量測元件特性。

    Besides having a wide direct bandgap of 3.37 eV, ZnO has an exciton binding energy of about 60 meV which is much higher than that of 22 meV and 25 meV for ZnSe and GaN, respectively. These benefits confirm the opto-electronic devices fabricated by ZnO material should have highly efficient performance at room temperature. Therefore the ZnO-based devices such as lighting-emitting diodes (LEDs), laser diodes (LDs), UV photodetectors, and solar cells have been recently proposed. In considering the ZnO-based LEDs, the fabrications of homo-structures still face much challenge.
    Owing to the non-stoichiometric property of making an undoped ZnO to be a n-type material, it is very difficult to obtain a highly doped p-type ZnO for the p-n junction. So we use MIS structure instead of p-n junction structure.
    Recently, nitrogen ion (N+) implantation and hydrogen peroxide (H2O2) solution were utilized to fabricate the ZnO-based MIS structures, On evaluating the production cost and simplifying the fabrication processes, the treatment by H2O2 solution is a better choice than the ion-implantation in obtaining an insulating ZnO layer. We immerse our sample in hydrogen peroxide to be an insulator layer. After that, Pt Schottky contact was deposited on peroxide-treated ZnO samples by thermal evaporation. Ti/Al contacts were used as an ohmic contact. We can get its I-V curve by HP4156.

    第一章 緒論-------------------------------------------------------------------------------1 第二章 理論基礎-------------------------------------------------------------------------3 2-1 ZnO薄膜的特性-------------------------------------------------------------------3 2-1-1 導電性質----------------------------------------------------------------------3 2-1-2 光學性質----------------------------------------------------------------------3 2-2 金半接觸理論----------------------------------------------------------------------5 2-2-1 基本特性----------------------------------------------------------------------5 2-2-2 蕭基能障----------------------------------------------------------------------9 2-2-3 歐姆接觸--------------------------------------------------------------------12 2-3 MIS二極體理論-----------------------------------------------------------------14 2-3-1 理想MIS(metal-insulator-semiconductor)二極體的簡介------------14 2-3-2 外來影響MIS 二極體的因素-------------------------------------------15 2-3-3 MIS 二極體的傳導現象--------------------------------------------------16 2-3-4 MIS 穿隧二極體-----------------------------------------------------------17 第三章 實驗方法與步驟--------------------------------------------------------------20 3-1 ZnO薄膜製程--------------------------------------------------------------------20 3-1-1 基板清洗過程---------------------------------------------------------------20 3-1-2 薄膜濺鍍過程---------------------------------------------------------------21 3-1-3 ZnO量測分析---------------------------------------------------------------23 3-2 絕緣層製作-----------------------------------------------------------------------24 3-2-1 雙氧水處理-----------------------------------------------------------------24 3-2-2 量測分析--------------------------------------------------------------------24 3-3 元件製程--------------------------------------------------------------------------25 3-3-1 微影製程--------------------------------------------------------------------25 3-3-2 蝕刻製程--------------------------------------------------------------------26 3-3-3 蒸鍍歐姆接觸電極製程---------------------------------------------------27 3-3-4 光阻去除--------------------------------------------------------------------28 3-3-5 雙氧水處理-----------------------------------------------------------------29 3-3-6 蒸鍍金屬層製程------------------------------------------------------------29 3-3-7 量測分析--------------------------------------------------------------------29 第四章 結果與討論--------------------------------------------------------------------30 4-1 製程參數對ZnO薄膜之影響-------------------------------------------------30 4-2 雙氧水處理前後的 TEM 與 PL 量測-------------------------------------32 4-3 歐姆接觸的TLM量測---------------------------------------------------------35 4-4 雙氧水處理前後I-V特性量測-----------------------------------------------36 第五章 結論-----------------------------------------------------------------------------38 參考文獻----------------------------------------------------------------------------------39

    [1]. A. Shimizu, M. Kanbara, M. Hada, and M. Kasuga, “ZnO Green Light Emitting Diode”, Jpn. J. Appl. Phys., Vol. 17, pp. 1435-1436, 1978.
    [2]. Ya. I. Alivov , D. C. Look , B. M. Ataev , M. V. Chukichev , V.V . Mamedov , V. I. Zinenko , Yu. A. Agafonov, and A. N. Pustovit, “Fabrication of ZnO-based metal–insulator–semiconductor diodes by ion implantation”, Solid-State Electron., Vol. 48, pp. 2343-2346, 2004.
    [3]. H. T. Wang, B. S. Kang, J. J. Chen, T. Anderson, S. Jang, F. Ren, H. S. Kim, Y. J. Li, D. P. Norton, and S. J. Pearton, “Band-edge electroluminescence from N+-implanted bulk ZnO”, Appl. Phys. Lett., Vol. 88, 102107, 2006.
    [4]. P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices”, Appl. Phys. Lett., Vol. 89, 111112, 2006.
    [5]. D. K. Hwang, M. S. Oh, J. H. Lim, Y.S. Choi, and S. J. Park, “ZnO-based light-emitting metal-insulator-semiconductor diodes”, Appl. Phys. Lett., Vol. 91, 121113, 2007.
    [6]. Z.K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films”, Appl. Phys. Lett., Vol. 72, pp. 3270-3272, 1998.
    [7]. H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H. Hosono, “UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO”, Thin Solid Films, Vol. 445, pp. 317-321, 2003.
    [8]. B. Sang, A. Yamada, and M. Konagai, “Textured ZnO Thin Films for Solar Cells Grown by a Two-step Process with the Atomic Layer Deposition Technique”, Jpn. J. Appl. Phys., Vol. 37, pp. L206-L208, 1998.
    [9]. D. C. Look, “Electrical and optical properties of p-type ZnO”, Semicond. Sci. Technol., Vol. 20, pp. S55-S61, 2005.
    [10]. S. Mridha, and D. Basak, “Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction”, J. Appl. Phys., Vol. 101, 083102, 2007.
    [11]. S. H. Kim, H. K. Kim, S. W. Jeong, and T. Y. Seong, “Characteristics of Pt Schottky contacts on hydrogen peroxide-treated n-type ZnO(0001) layers”, Superlattices Microstruct., Vol. 39, pp. 211-217, 2006.
    [12]. S. H. Kim, H. K. Kim, and T. Y. Seong, “Effect of hydrogen peroxide treatment on the characteristics of Pt Schottky contact on n-type ZnO”, Appl. Phys. Lett., Vol. 86, 112101, 2005.
    [13]. Q. L. Gu, C. C. Ling, X. D. Chen, C. K. Cheng, A. M. C. Ng, C. D. Beling, S. Fung, A. B. Djurisic, and L. W. Lu, “Hydrogen peroxide treatment induced rectifying behavior of Au/ZnO contact”, Appl. Phys. Lett., Vol. 90, 122101, 2007.
    [14]. Y. Chen, F. Jiang, L. Wang, C. Mo, Y. Pu, and W. Fang, “Influence of hydrogen peroxide solution on the properties of ZnO thin films”, J. Cryst. Growth, Vol. 268, pp. 71-75, 2004.
    [15]. Y. Chen, L. Wang, C. Mo, Y. Pu, W. Fang, and F. Jiang, “Study of structural and luminescent properties of high-quality ZnO thin films treatment with hydrogen peroxide solution”, Mater. Sci. Semicond. Process., Vol. 8, pp. 569-575, 2005.
    [16]. 林素霞, “氧化鋅薄膜的特性改良及應用之研究”, 成功大學材料科學及工程研究所博士論文, 2003.
    [17]. D. F. Paraguay, L. W. Estrada, N.D.R. Acosta, E. Andrade, and M. Miki-Yoshida, “Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis”, Thin Solid Films, Vol. 350, pp. 192-202, 1999.
    [18]. S. M. Sze, “Physics of Semiconductor Devices”, John Wiley & Sons, 1981.
    [19]. Donald A. Neamen, “Semiconductor Physics and Devices”, McGraw-Hill, 2003.
    [20]. 李世鴻, “半導體物理及元件”, McGraw-Hill, 2003.
    [21]. 龔柏誠, “氧化鋅之MIS 二極體的研究”, 成功大學電機工程學系微電子所碩士論文, 2006.
    [22]. 莊達人, “VLSI製造技術”, 高立圖書, 2003.
    [23]. 張勁燕, “半導體製程設備”, 五南圖書, 2000.
    [24]. Y. Zhang, G. Du, D. Liu, X. Wang, Y. Ma, J. Wang, J. Yin, X. Yang, X. Hou, and S. Yang, “Crystal growth of undoped ZnO films on Si substrates under different sputtering conditions”, J. Cryst. Growth, Vol. 243, pp. 439-443, 2002.
    [25]. Y.M. Lu, W.S. Hwang, W.Y. Liu, and J.S. Yang, “Effect of RF power on optical and electrical properties of ZnO thin film by magnetron sputtering”, Mater. Chem. Phys., Vol. 72, pp. 269-272, 2001.
    [26]. F. Chaabouni, M. Abaab, and B. Rezig, “Effect of the substrate temperature on the properties of ZnO films grown by RF magnetron sputtering”, Mater. Sci. Eng., B, Vol. 109, pp. 236-240, 2004.
    [27]. Y. Yoshino, K. Inoue, M. Takeuchi, and K. Ohwada, “Effects of interface micro structure in crystallization of ZnO thin films prepared by radio frequency sputtering”, Elsevier Science. Vol. 51, pp. 601-607, 1998.
    [28]. C. Kim, S. Kim and C. Lee, “Effects of RF Power and Substrate Temperature during RF Magnetron Sputtering on Crystal Quality of ZnO Thin Films”, Jpn. J. Appl. Phys., Vol. 44, pp. 8501-8503, 2005.
    [29]. T. Minami, T. Miyata, Y. Ohtani and Y. Mochizuki, “New Transparent Conducting Al-doped ZnO Film Preparation Techniques for Improving Resistivity Distribution in Magnetron Sputtering Deposition”, Jpn. J. Appl. Phys., Vol. 45, pp. L409-L412, 2006.
    [30]. K. H. Kim, K. C. Park, and D. Y. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering”, J. Appl. Phys., Vol. 81, pp. 7764-7772, 1997.
    [31]. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Appl. Phys. Lett., Vol. 79, pp. 943-945, 2001.
    [32]. K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, and F. Ren, “Carrier concentration dependence of Ti/Al/Pt/Au contact resistance on n-type ZnO”, Appl. Phys. Lett., Vol. 84, pp. 544-546, 2004.
    [33]. H. K. Kim, S. W. Kim, B. Yang, S. H. Kim, K. H. Lee, S. H. Ji, and Y. S. Yoon, “Electrical and Interfacial Properties of Nonalloyed Ti/Au Ohmic and Pt Schottky Contacts on Zn-Terminated ZnO”, Jpn. J. Appl. Phys., Vol. 45, pp. 1560-1565, 2006.
    [34]. S. Y. Kim, H. W. Jang, J. K. Kim, C. M. Jeon, W. I. Park, G. C. Yi, and J. L. Lee, “Low-resistance Ti/Al Ohmic Contact on Undoped ZnO”, J. Electron. Mater., Vol. 31, pp. 868-871, 2002.
    [35]. H. K. Kim, I. Adesida, K. K. Kim, S. J. Park, and T. Y. Seong, “Study of the Electrical and Structural Characteristics of Al/Pt Ohmic Contacts on n-Type ZnO Epitaxial Layer”, J. Electrochem. Soc., Vol. 151, pp. G223-G226, 2004.
    [36]. H. S. Yang, D. P. Norton, S. J. Pearton, and F. Ren, “Ti/Au n-type Ohmic contacts to bulk ZnO substrates”, Appl. Phys. Lett., Vol. 87, 212106, 2005.
    [37]. 陳靜怡, “氧化鋅中介層對ITO透明導電膜性質之影響”, 成功大學材料科學及工程學系碩士論文, 2002.

    下載圖示 校內:2009-07-04公開
    校外:2011-07-04公開
    QR CODE