簡易檢索 / 詳目顯示

研究生: 劉映麟
LIU, Ying-Lin
論文名稱: 非接觸式血壓估測-使用手部rPPG訊號之混合特徵
Contactless Blood Pressure Estimation based on The Hybrid Features of Hand rPPG Signals
指導教授: 侯廷偉
Hou, Ting-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 68
中文關鍵詞: 非接觸式心跳預測非接觸式血壓預測遠端光體積描記法(remote photopl ethysmography, rPPG)CNN隨機森林
外文關鍵詞: Non-contact heart rate estimation, Non-contact blood pressure estimation, ,remote photoplethysmography (rPPG), CNN, Random Forest
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著預防醫學與遠距醫療的興起,非接觸式生理訊號監測技術已成為研究熱點。本研究提出一套基於遠端光體積變化描記圖(remote Photoplethysmography, rPPG)技術之非接觸式血壓估測系統,專注於分析手部(手掌與手背)區域之微弱光學變化。系統透過一般視訊鏡頭(Webcam)擷取影像,並應用平面正交投影(Plane-Orthogonal-to-Skin, POS)演算法與帶通濾波器提取血液容積脈搏訊號(Blood Volume Pulse, BVP),建立可於一般室內環境運作之影像式生理訊號處理流程。
    本研究採用混合特徵提取策略,結合傳統生理統計特徵(如心率、脈搏振幅與心跳間隔變異性)以及一維卷積類神經網路自編碼器(1D-CNN Autoencoder)所學習之深度波形潛在特徵,以提升模型對非線性脈搏形態與個體差異之表達能力。在模型建構方面,針對收縮壓(SBP)與舒張壓(DBP)分別訓練隨機森林回歸模型,並導入 Ridge 回歸校正機制以降低系統性預測偏差。
    實驗結果顯示,於跨受試者(20人)驗證情境下,結合混合特徵與個人化校正策略可顯著提升血壓估測準確度。其中,SBP 平均絕對誤差(MAE)由約 14–16 mmHg 降低至約 5–6 mmHg,DBP MAE 則由約 8–10 mmHg 降低至約 2.7–3.1 mmHg,顯示深度潛在特徵與校正機制對預測穩定性具關鍵貢獻。與未導入個人化調整之模型相比,本方法於跨個體應用情境下展現出顯著誤差降低效果。
    此外,相較於臉部量測方式,手部 rPPG 具備較低隱私風險與較高情境可用性,適合應用於日常居家與辦公環境之長期監測需求。整體而言,本研究所提出之混合特徵非接觸式血壓估測方法,在一般硬體設備下即可達成具臨床潛力之預測效能,為非接觸式生理監測系統提供一項可行解決方案。

    With the rise of preventive medicine and telehealth, contactless physiological monitoring technologies have become an active research focus. This study proposes a contactless blood pressure (BP) estimation system based on remote photoplethysmography (rPPG) to analyze subtle optical variations in hand reg-ions, including the palm and the back of the hand. Video sequences are captured using a standard web-cam, and Blood Volume Pulse (BVP) signals are extracted using the Plane-Orthogonal-to-Skin (POS) algorithm combined with a bandpass filter.

    A hybrid feature extraction strategy integrates conventional physiological statistical features with mor- phological waveform representations learned by a one-dimensional convolutional neural network autoencoder (1D-CNN Autoencoder). Separate Random Forest regression models are trained for systol-ic blood pressure (SBP) and diastolic blood pressure (DBP), followed by a Ridge regression-based cali-bration mechanism to reduce systematic prediction bias. Cross-subject performance is evaluated using Leave-One-Subject-Out (LOSO) validation.

    Experimental results show that the proposed framework significantly improves BP estimation accuracy, reducing SBP mean absolute error (MAE) from approximately 14–16 mmHg to 5–6 mmHg and DB-P MAE from approximately 8–10 mmHg to 2.7–3.1 mmHg. These findings demonstrate that deep waveform representations and personalization-based calibration effectively mitigate inter-subject varia-bility. Compared to face-based measurements, hand-based rPPG provides enhanced privacy preservati-on and practical applicability for long-term contactless BP monitoring.

    摘要 i Extended Abstract II 致謝 VII 目錄 VIII 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究貢獻 2 1.4 論文架構 4 第二章 文獻探討 6 2.1 非接觸式血壓監測與 cuffless BP 研究背景 6 2.1.1 傳統袖帶式血壓量測限制與居家監測需求 7 2.1.2 cuffless BP 定義、應用情境與挑戰 8 2.1.3 評估指標(AAMI/ISO/BHS) 9 2.2 rPPG 基礎原理與訊號形成機制 9 2.2.1 PPG 與 rPPG 原理:血液容積變化與皮膚反射 10 2.2.2 影像式生理訊號的影響因素 12 2.3 ROI 選取與追蹤策略 13 2.3.1 臉部 ROI 13 2.3.2 手部 ROI 14 2.3.3 ROI 偵測方法 14 2.4 皮膚正交平面法(Plane Orthogonal-to-Skin,POS) 15 2.5 卷積神經網路(Convolutional Neural Network,CNN) 18 2.6 血壓推估方法與計算流程(SBP / DBP) 18 第三章 實驗架構 20 3.1 系統架構 20 3.2 資料收集 21 3.2.1 量測設備與環境設定 21 3.2.2 GUI 資料建立與量測流程 22 3.2.3 ROI 擷取 24 3.2.4 POS 演算法萃取 BVP 24 3.2.5 濾波後波形輸出與特徵計算輸入 24 3.2.6 Bandpass Filtering 與訊號前處理 25 3.3 模型訓練與驗證 25 3.3.1 波形切片 26 3.3.2 傳統特徵萃取 27 3.3.3 1D-CNN Autoencoder 模型訓練 29 3.3.4 深度特徵萃取 30 3.3.5 混合特徵策略 31 3.3.6 模型驗證與最終模型保存 32 3.4 加入 UKL 臨床資料之外部驗證與個人化校正 33 3.4.1 UKL 資料載入 34 3.4.2 資料篩選 35 3.4.3 UKL 加入策略設計 35 3.4.4 結果評估與比較 36 第四章 實驗結果與討論 37 4.1 實驗資料與評估設定 37 4.2 評估指標 39 4.3 自建資料集之模型效能評估 40 4.4 引用外部資料集並與文獻模型之比較分析 41 4.5 本章小結 46 第五章 結論與未來研究方向 49 5.1 結論 49 5.2 未來研究方向 51 參考文獻 53 附錄 56 附錄1、UKL資料示意圖 56

    [1] J.-R. Hu, G. Martin, S. Iyengar, L. C. Kovell, T. B. Plante, N. van Helmond, R. A. Dart, T. M. Brady, R.-A. N. Turkson-Ocran, and S. P. Juraschek, “Validating cuffless continuous blood pressure monitoring devices,” 2023. PMCID: PMC9971997; PMID: 36865583.
    [2] R. Mukkamala, M. Yavarimanesh, K. Natarajan, J.-O. Hahn, K. G. Kyriakoulis, A. P. Avolio, and G. S. Stergiou, “Evaluation of the accuracy of cuffless blood pressure measurement devices: Challenges and proposals,”Hypertension, vol. 78, no. 5, 2021, doi: 10.1161/HYPERTENSIONAHA.121.17747.
    [3] T. Tamura, Yuka Maeda, M. Sekine, Masaki Yoshida, "Wearable Photoplethysmographic Sensors—Past and Present", https://www.semanticscholar.org/reader/ca04bcc2fdd9aed2b04e1f17c6bbb62f44dd3668, (Apr. 1, 2014),(Last Access 02/03/2026)
    [4] H. Gesche, D. Grosskurth, G. Küchler, and A. Patzak, “Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method,” European Journal of Applied Physiology, vol. 112, pp. 309–315, 2012.
    [5] M. Cao, T. Burton, G. Saiko, and A. Douplik, “Remote photoplethysmography with a high-speed camera reveals temporal and amplitude differences between glabrous and non-glabrous skin,” Sensors, 2023. PMCID: PMC9866593; PMID: 36679411.
    [6] J. B. Cohen, R. L. Byfield, S. T. Hardy, S. P. Juraschek, N. H. Miller, R. Mukkamala, D. S. Picone, R. H. Thiele, E. Yang, and T. M. Brady, “Cuffless devices for the measurement of blood pressure: A scientific statement from the American Heart Association,”Hypertension, 2024, doi: 10.1161/HYP.0000000000000254.

    [7] K. L. Wong, J. W. Chin, T. T. Chan, I. Odinaev, K. Tianqu and R. H. Y. So, “Optimising rPPG signal extraction by exploiting facial surface orientation,” in Proc. CVPR Workshop, 2022, pp. 0–0, doi: 10.1109/CVPRW56347.2022.
    [8] J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiological Measurement, vol. 28, no. 3, pp. R1–R39, 2007, doi: 10.1088/0967-3334/28/3/R01. PMID: 17322588.
    [9] W. Wang, A. C. den Brinker, S. Stuijk, and G. de Haan, “Algorithmic principles of remote PPG,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 7, pp. 1479–1491, 2017.
    [10] A. Atyabi and N. M. Ahmad, “Deep learning based feature extraction for blood pressure estimation using photoplethysmography,” Biomedical Signal Processing and Control, vol. 58, 2020, Art. no. 101831.
    [11] F. Schrumpf, P. Frenzel, C. Aust, G. Osterhoff, and M. Fuchs, “Assessment of Non-Invasive blood pressure prediction from PPG and rPPG signals using deep learning,” Sensors, vol. 21, no. 18, p. 6022, 2021, doi: 10.3390/s21186022.
    [12] X. Niu, H. Han, S. Shan, and X. Chen, “A comparative survey of methods for remote heart rate detection from frontal face videos,” Frontiers in Bioengineering and Biotechnology, vol. 6, 2018, Art. no. 33, doi: 10.3389/fbioe.2018.00033.
    [13] G. de Haan and A. van Leest, “Improved motion robustness of remote-PPG by using the blood volume pulse signature,” Physiological Measurement, vol. 35, pp. 1913–1926, 2014.
    [14] A. Moco, S. Stuijk, M. van Gastel, and G. de Haan, “Impairing factors in remote-PPG pulse transit time measurements on the face,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), 2018.
    [15] G. Zhang, M. Gao, D. Xu, N. B. Olivier, and R. Mukkamala, “Pulse arrival time is not an adequate surrogate for pulse transit time as a marker of blood pressure,” Journal of Applied Physiology, vol. 111, pp. 1681–1686, 2011.
    [16] G. S. Stergiou, A. Kollias, C. Destounis, and G. T. O’Brien, “A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement,” Hypertension, vol. 71, pp. 368–374, 2018.
    [17] 黃信豪,手心與額頭 rPPG 非接觸式血壓推估研究,成功大學工程科學系碩士論文,2025。
    [18] 蔡明璋,應用毫米波雷達偵測胸腔位移經由信號處理與機器學習推算呼吸、心跳與血壓,成功大學工程科學系碩士論文, 2024。

    QR CODE